
 o_.-=.
 (\'".\|
 .>' (_--.
 _=/d ,^\
 ~~ \)-' '
 / |
 ' '

Frequency domain INterferomEter Simulation SoftwarE

www.gwoptics.org/finesse

19th May, 2014

http://www.gwoptics.org/finesse

Finesse is a fast interferometer simulation program. For a given optical setup, it com-
putes the light field amplitudes at every point in the interferometer assuming a steady
state. To do so, the interferometer description is translated into a set of linear equa-
tions that are solved numerically. For convenience, a number of standard analyses can be
performed automatically by the program, namely computing modulation-demodulation
error signals, transfer functions, quantum-noise-limited sensitivities, and beam shapes.
Finesse can perform the analysis using the plane-wave approximation or Hermite-Gauss
modes. The latter allows computation of the properties of optical systems like telescopes
and the effects of mode matching and mirror angular positions.

Finesse, the accompanying documentation, and the example files have been written by:

Andreas Freise
School of Physics and Astronomy
The University of Birmingham
Edgbaston, Birmingham, B15 2TT, UK
andreas.freise@googlemail.com

Finesse has been substantially developed further during the last years with Daniel Brown
providing the key contributions, such as the implementation of mirror maps, radiation
pressure effects and quantum noise. Daniel’s work on the code and the manual was
essential for the publication of Finesse as open source. Charlotte Bond has carefully
tested the new code and provided tutorials, examples and documentation.

Parts of the original Finesse source and ‘mkat’ have been written by Gerhard Heinzel.
Part of the Finesse source have been written by Paul Cochrane.

The software and documentation is provided as is without any warranty
of any kind. Copyright c© by Andreas Freise 1999 – 2014.

The source code for Finesse is available as open source under the GNU General Public
License version 3 as published by the Free Software Foundation.

This manual and all Finesse documentation and examples available from www.gwoptics.

org/finesse and related pages are distributed under a Creative Commons Attribution-
Noncommercial-Share Alike License, see http://creativecommons.org/licenses/by-

nc-sa/2.0/uk/.

This document has been assigned the LIGO DCC number: LIGO-T1300431.

mailto:andreas.freise@googlemail.com
http://www.gwoptics.org/finesse
http://www.gwoptics.org/finesse
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

--

FINESSE v2.0 - Help Screen - 18.05.2014

--

** Usage (1) kat [options] infile [outfile [gnufile]]

or (2) kat [options] basename

in (2) e.g. basename ’test’ means input filename : ’test.kat’,

output filename : ’test.out’ and Gnuplot file name : ’test.gnu’.

** Support :

User support forums: http://www.gwoptics.org/finesse/forums/

Online syntax reference: http://www.gwoptics.org/finesse/reference/

** Available options:

-v : prints version number and build date

-h : prints this help (-hh prints second help screen)

-c : check consistency of interferometer matrix

-max : prints max/min

-klu-full : switch to KLU solver for parallel frequencies (default)

-klu : switch to KLU (Legacy solver)

--server : starts Finesse in server mode

--noheader : suppresses header information in output data files

--perl1 : suppresses printing of banner

--quiet : suppresses almost all screen outputs

--convert : convert knm files between text and binary formats

** Available interferometer components:

l name P f [phase] node - laser

m name R T phi node1 node2 - mirror

(or: m1 name T Loss phi ...

m2 name R Loss phi ...)

s name L [n] node1 node2 - space

bs name R T phi alpha node1 node2 node3 node4 - beamsplitter

(or: bs1 name T Loss phi ...

bs2 name R Loss phi ...)

gr[n] name d node1 node2 [node3 [node4]] - grating

isol name S node1 node2 [node3] - isolator

mod name f midx order am/pm [phase] node1 node2 - modulator

lens f node1 node2 - thin lens

sq name f r angle node - squeezed input

** Detectors:

pd[n] name [f1 [phase1 [f2...]]] node[*] - photodetector [mixer]

pdS[n] name [f1 phase1 [f2...]] node[*] - sensitivity

pdN[n] name [f1 phase1 [f2...]] node[*] - norm. photodetector

ad name [n m] f node[*] - amplitude detector

bp name x/y parameter node[*] - plots beam parameters

cp cavity_name x/y parameter - plots cavity parameters

gouy name x/y space-list - plots gouy phase

beam name [f] node[*] - plots beam shape

qd name f phase node[*] - quantum quadrature detector

sd name f [n m] node[*] - squeezing detector

shot name node[*] - shot noise

qshot[S/N] name n f1 [phase1 [f2...]] node[*] - quantum shotnoise detector

qnoised[S/N] name n f1 [phase1 [f2...]] node[*] - quantum noise detector

pgaind name component motion - open loop param. gain det.

** Available commands:

iii

fsig name component [type] f phase [amp] - apply signal

fsig name component [type] f transfer_func - signal wth transfer function

fsig name f - set signal/noise frequency

fadd f1 f2 f3 ... fN - add frequencies to list

tem[*] input n m factor phase - input power in HG/LG modes

mask detector n m factor - mode mask for outputs

pdtype detector type-name - set detector type

attr component M value Rcx/y value x/ybeta value - attributes of m/bs

(alignment angles beta in [rad])

map component filename - read mirror map file

knm component_name filename_prefix [flag] - save coefficients to file

smotion component map_file transfer_function - set surface motion

maxtem order - TEM order: n+m<=order

gauss name component node w0 z [wy0 zy] - set q parameter

gauss* name component node q [qy] (q as ’z z_R’) - set q parameter

gauss** name component node w(z) Rc [wy(z) Rcy] - set q parameter

cav name component1 node component2 node - trace beam in cavity

startnode node - startnode of trace

lambda wavelength - overwrite wavelength

retrace [off|force] - re-trace beam on/off

phase 0-7 (default: 3) - change Gouy phases

(1: phi(00)=0, 2: gouy(00)=0, 4: switch ad phase)

conf component_name setting value - configures component

vacuum components_names - specific quantum noise

tf name factor phase [{p/z f Q [p/z f2 Q2 ...]] - f,Q transfer function

tf2 name factor phase [p1,p2,...] [z1,z2,...] - complex transfer function

** Plot and Output related commands :

xaxis[*] component param. lin/log min max steps - parameter to tune

x2axis[*] component param. lin/log min max steps - second axis for 3D plot

noxaxis - ignore xaxis commands

const name value - constant $name

var name value - tunabel variable $name

set name component parameter - variable $name

func name = function-string - function $name

lock[*] name $var gain accuracy - lock: make $var to 0

put[*] component parameter $var/$x1/$x2/$fs/$mfs - updates parameter

noplot output - no plot for ’output’

trace verbosity - verbose tracing

yaxis [lin/log] abs:deg/db:deg/re:im/abs/db/deg - y-axis definition

scale factor [output] - y-axis rescaling

diff component parameter - differentiation

deriv_h value - step size for diff

** Auxiliary plot commands :

gnuterm terminal [filename] - Gnuplot terminal

pyterm terminal - Python terminal

pause - pauses after plotting

multi - plots all surfaces

save/load knm file

GNUPLOT \ ... \ END - set of extra commands

for plotting.

iv

--

FINESSE v2.0 - Help Screen (2) - 18.05.2014

--

** Alternative calls:

kat --server <portnumber (11000 to 11010)> [options] inputfile

starts Finesse in server mode listening on a TCP/IP port

kat --convert knm_file_prefix 1/2 [new_knm_file_prefix]

converts binary knm file to ASCII and vice versa

** Some conventions:

names (for components and nodes) must be less than 15 characters long

angles of incidence, phases and tunings are given in [deg]

(a tuning of 360 deg corresponds to a position change of lambda)

misalignment angles are given in [rad]

** Signal frequency variable

The variables $fs and $mfs can be used in functions, put commands

and as the frequency value in any of the detectors. $fs is the positive

frequency and $mfs is the negative.

** Motion and suspension variables

Motion names used in xd detectors, slinks and xlinks to select

particular motions of a suspended optic:

z = longitudinal motion

rx, yaw = x-z plane rotation

ry, pitch = y-z plane rotation

sN = The Nth surface motion set with the smotion command, from 0 -> N-1

To set the suspension transfer function with the attr command, use:

zmech = Longitudinal motion

rxmech = yaw motion

rymech = pitch motion

** Geometrical conventions:

tangential plane: x, z (index n), saggital plane: y, z (index m)

xbeta refers to a rotation in the x, z plane, i.e. around the y-axis

R<0 when the center of the respective sphere is down beam

(the beam direction is defined locally through the node order:

i.e. mirror: node1 -> node2, beam splitter: node1 -> node3)

beam parameter z<0 when waist position is down beam

** frequency n: ‘n’ bit coded word, produces the following output:

frequency 1: print all frequencies computed

frequency 2: print frequency coupling matrix for each modulator

** trace n: ‘n’ bit coded word, produces the following output:

trace 1: list of TEM modes used

trace 2: cavity eigenvalues and cavity parameters like FWHM,

FSR optical length and Finesse

trace 4: mode mismatch parameters for the initial setup

trace 8: beam parameters for every node, nodes are listed in

the order found by the tracing algorithm

trace 16: Gouy phases for all spaces

trace 32: coupling coefficients for all components

trace 64: mode matching parameters during calculation, if

v

they change due to a parameter change, for example

by changing a radius of curvature.

trace 128: nodes found during the cavity tracing

** phase 0-7: also bit coded, i.e. 3 means ‘1 and 2’

phase 1: phase of coupling coefficients k_00 set 0

phase 2: Gouy phase of TEM_00 set to 0

phase 4: ‘ad name n m f’ yields amplitude without Gouy phase

(default: phase 3)

** bp, possible parameters for this detector:

w : beam radius

w0 : waist radius

z : distance to waist

zr : Rayleigh range

g : Gouy phase

r : Radius of curvature (phase front) in meters

q : Gaussian beam parameter

g : Stability parameter

** isol S, suppression given in dB:

amplitude coefficient computed as 10^-(S/20)

** maxtem O/off : O=n+m (TEM_nm) the order of TEM modes,

‘off’ switches the TEM modus off explicitly

** conf:

This command is used to configure settings of a component

that are not physical parameters.

o Modulators

- conf component numerical_f_couple n

n = 1 (on - default) or 0 (off)

Numerically compares all frequencies and couples them if they

match the modulation frequency or its harmonics

- conf component print_f_coupling n

n = 1 (on) or 0 (off - default)

print which frequencies couple to which at this modulator

for the carrier and sideband fields

o Mirors and Beamsplitters

- conf component integration_method n

sets the numerical integration method. Cubature refers to a

self-adapting routine which is faster but less robust

1 - Riemann Sum

2 - Cubature - Serial

3 - Cubature - Parallel (default)

- conf component interpolation_method n

sets the interpolation method for the numerical integration of

surface maps (use NN for maps with sharp edges):

1 - Nearest Neighbour

2 - Linear (default)

3 - Spline

- conf component interpolation_size n

sets the size of the interpolation kernel, must be odd and > 0

(default=3)

- conf component knm_flags n

vi

sets the knm computation flags which define if coeffs are calculated

numerically or analytically if possible, see below for values of ’n’

- conf component show_knm_neval 0/1

sshows the number of integrand evaluations used for the map integration

- conf component save_knm_matrices 0/1

if true the knm matrices are saved to .mat files

for distortion, surface map and the final result

- conf component save_knm_binary 0/1

if true the knm and merged map data is stored in a

binary format rather than ASCII, see --convert option

for converting between the 2 formats

- conf component save_interp_file 0/1

if true a file is written for each knm

to output each interpolated point. The file

has 4 columns: x, y, amplitude, phase.

- conf component save_integration_points 0/1

if true all points used for integration are

saved to a file (use this only with the Riemann

integrator, Cubature can use millions of points!)

- conf component knm_order 12/21

changes the order in which the coupling coefficient matrices

are computed. 1 = Map, 2 = Bayer-Helms

- conf component knm_change_q 1/2

specifies the expansion beam parameter q_L

if 1 then q_L = q’_1 and if 2 then q_L = q_2

** knm flags: ‘n’ bit coded word, set computation of coupling coeffs

use with the ‘conf compoent knm_flag’ command:

0 : analytic solution of all effects used

1 : verbose, i.e. print coupling coefficients

2 : numerical integration if x and y misalignment is set

4 : numerical integration if x or y misalignment is set

8 : calculates aperture knm by integration

16 : calculates curvature knm by integration

32 : calculates bayer-helms knm by integration

(default: knm 8)

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 How does it work? . 4
1.3 Quick start . 5

1.3.1 Installation . 5
1.3.2 How to perform a simulation . 6

2 The program files 15
2.1 kat—the main program . 15
2.2 kat.ini—the init file for kat . 15
2.3 *.kat—the input files (how to do a calculation) 18
2.4 *.out—the output files . 19
2.5 *.gnu—the Gnuplot batch files . 20
2.6 *.m—the Matlab script files . 20
2.7 *.py—the Python script files . 20

3 Mathematical description of light beams and optical components 23
3.1 Introduction . 23

3.1.1 Static response and frequency response 23
3.1.2 Transfer functions and error signals 24
3.1.3 The interferometer matrix . 28

3.2 Conventions and concepts . 29
3.2.1 Nodes and components . 30
3.2.2 Mirrors and beam splitters . 31

3.3 Frequencies and wavelengths . 32
3.3.1 Phase change on reflection and transmission 32
3.3.2 Lengths and tunings . 32

3.4 The plane-wave approximation . 33
3.4.1 Description of light fields . 34
3.4.2 Photodetectors and mixers . 35
3.4.3 Modulation of light fields . 35
3.4.4 Coupling of light field amplitudes 41
3.4.5 Input fields or the ‘right hand side’ vector 52
3.4.6 Photodetectors and demodulation 57

3.5 The lock command . 60
3.5.1 Using a real error signal for a lock 62
3.5.2 Setting the lock gain . 63
3.5.3 Tuning the lock . 64
3.5.4 A pseudo-lock . 66

4 Higher-order spatial modes, the paraxial approximation 69
4.1 Finesse with Hermite-Gaussian beams . 69

ix

Contents

4.2 Gaussian beams . 70
4.3 Higher order Hermite-Gauss modes . 72

4.3.1 Gaussian beam parameter . 73
4.3.2 Tangential and sagittal plane . 74
4.3.3 Gouy phase shift . 75
4.3.4 ABCD matrices . 75

4.4 Tracing the beam . 78
4.5 Interferometer matrix with Hermite-Gauss modes 80
4.6 Coupling of Hermite-Gauss modes . 82

4.6.1 Coupling coefficients for TEM modes 82
4.6.2 Alignment transfer function . 85

4.7 Mirror surface maps . 86
4.7.1 Phase maps . 87
4.7.2 Absorption maps . 88
4.7.3 Reflectivity maps . 88
4.7.4 Coupling coefficients from mirror maps 88
4.7.5 The map file format . 89
4.7.6 How to apply a map to a component 90
4.7.7 Accelerating calculations by saving coupling coefficients 91
4.7.8 Coupling cofficient data files - ASCII vs binary formats 92
4.7.9 Integration and interpolation methods 92
4.7.10 Map example: a focusing surface in transmission 94
4.7.11 Surface map example: a tilted mirror in reflection 96
4.7.12 Realistic map example: thermal distortions 97
4.7.13 Couling coefficients for multiple effects 98

4.8 Detection of Hermite-Gauss modes . 101
4.8.1 Amplitude detectors . 101
4.8.2 Photodetectors . 101
4.8.3 Split photodetector . 102
4.8.4 Beam detectors . 105

4.9 Limits to the paraxial approximation . 106
4.10 Mode mismatch in practice when using Finesse 107

4.10.1 Phases and operating points . 107
4.10.2 The phase command and its effects 108
4.10.3 Mode mismatch effects on the cavity phase 109

4.11 Misalignment angles at a beam splitter . 112
4.12 Aperture effects and diffraction losses . 114

5 Radiation pressure 119
5.0.1 Radiation pressure calculation approximations 119

5.1 Radiation pressure force to a mirror motion 120
5.2 Mirror motion to optical phase change . 121
5.3 Example: optical spring . 122
5.4 Rotational mirror motion . 124
5.5 Example: torsional optical spring . 125
5.6 General of surface motions . 125

5.6.1 Parametric gain detector . 126
5.7 Example: parametric instabilities . 127

6 Quantum noise 131
6.1 New quantum noise modelling . 131

x

Contents

6.1.1 Sources of quantum noise . 132
6.1.2 Quantum detectors . 133
6.1.3 Example: unbalanced quantum noise homodyne detection 136
6.1.4 Example: dual-recycled, quantum-noise limited sensitivity 138
6.1.5 Example: a filter cavity, or how to rotate a squeezed state 142

6.2 Shot-noise-limited sensitivity (before version 2.0) 143
6.2.1 Simple Michelson interferometer on a half fringe 144
6.2.2 Simple Michelson interferometer on a dark fringe 147

7 Advanced Usage 151
7.1 PyKat: Finesse and Python . 151
7.2 Finesse and Octave/Matlab . 152

7.2.1 SimTools . 152
7.2.2 Client-Server mode of FINESSE . 153

A Tutorial for setting up and locking a cavity 161
A.1 The Basics . 161
A.2 Creating the error signal . 163
A.3 Forming the locking loop . 165

B Shot-noise limited sensitivity of GEO 600 169
B.1 The qshot command (before Finesse 2.0) 169
B.2 Comparing the different methods . 170
B.3 Computing the shot-noise-limited sensitivity of GEO 173

C Realistic thermal distortions in Advanced LIGO arm cavities 177
C.1 Preparing mirror maps . 178
C.2 Simulation setup . 180
C.3 Results . 181

D Further reading: Finesse in practice 185

E Maps and Coupling Coefficients 187
E.1 Correct implementation . 189
E.2 Separating more distortions . 190
E.3 Coupling coefficient integration performance improvements 190

F Some mathematics 193
F.1 Hermite polynomials . 193
F.2 The paraxial wave equation . 193

G Syntax reference 195
G.1 Comments . 195
G.2 Components . 195
G.3 Hermite-Gauss extension . 204
G.4 Commands . 213
G.5 Auxiliary plot commands . 222

Acknowledgements 223

Bibliography 225

xi

xii

Chapter 1

Introduction

Finesse is a simulation program for interferometers. The user can build any kind of
virtual interferometer using the following components:

- lasers, with user-defined power, wavelength and shape of the output beam;
- free spaces with arbitrary index of refraction;
- mirrors and beam splitters, with flat or spherical surfaces;
- modulators to change amplitude and phase of the laser light;
- amplitude or power detectors with the possibility of demodulating the detected

signal with one or more given demodulation frequencies;
- lenses and Faraday isolators.

For a given optical setup, the program computes the light field amplitudes at every point
in the interferometer assuming a steady state. To do so, the interferometer description
is translated into a set of linear equations that are solved numerically. For convenience,
a number of standard analyses can be performed automatically by the program, namely
computing modulation-demodulation error signals and transfer functions. Finesse can
perform the analysis using plane waves or Hermite-Gauss modes. The latter allows com-
putation of the effects of mode matching and misalignments. In addition, error signals
for automatic alignment systems can be simulated.

laser

BS

PD refl

end mirrorinput mirror

EOM

signal generator

mixer

Figure 1.1: A schematic diagram of a laser interferometer which can be modelled using
Finesse (in this case a Fabry-Perot cavity with a Pound-Drever-Hall control scheme).

Literally every parameter of the interferometer description can be tuned during the sim-
ulation. The typical output is a plot of a photodetector signal as a function of one or
two parameters of the interferometer (e.g. arm length, mirror reflectivity, modulation

1

Chapter 1 Introduction

frequency, mirror alignment). Finesse automatically calls Gnuplot (a free graphics pro-
gram [Gnuplot]) to create 2D or 3D plots of the output data (alternatively plotting of
the output data can be performed with Python or Matlab, see sections 2.6 and 2.7). Op-
tional text output provides information about the optical setup like, for example, mode
mismatch coefficients, eigenmodes of cavities and beam sizes.

Finesse provides a fast and versatile tool that has proven to be very useful during
design and commissioning of interferometric gravitational wave detectors. However, the
program has been designed to allow the analysis of arbitrary, user-defined optical setups.
In addition, it is easy to install and easy to use. Therefore Finesse is very well suited to
study basic optical properties, like, for example, the power enhancement in a resonating
cavity or modulation-demodulation methods.

1.1 Motivation

The search for gravitational waves with interferometric detectors has led to a new type of
laser interferometer: new topologies are formed combining known interferometer types.
In addition, the search for gravitational waves requires optical systems with a very long
baseline, large circulating power and an enormous stability. The properties of this new
class of laser interferometers have been the subject of extensive research.

Figure 1.2: Bird’s eye view of the GEO 600 gravitational wave detector near Hannover,
Germany. Image courtesy of Harald Lück, Albert Einstein Institute Hannover.

2

1.1 Motivation

Several prototype interferometers have been built during the last few decades to investi-
gate their performance in detecting gravitational waves. The optical systems, Fabry-Perot
cavities, a Michelson interferometer and combinations thereof are in principle simple and
have been used in many fields of science for many decades. The sensitivity required for
the detection of the expected small signal amplitudes of gravitational waves, however,
has put new constraints on the design of laser interferometers. The work of the grav-
itational wave research groups has led to a new exploration of the theoretical analysis
of laser interferometers. Especially, the clever combination of known interferometers has
produced new types of interferometric detectors that offer an optimised sensitivity for
detecting gravitational waves. Work on prototype interferometers has shown that the
models describing the optical system become very complex even though they are based
on simple principles. Consequently, computer programs have been developed to automate
the computational part of the analysis. To date, several programs for analysing optical
systems are available to the gravitational wave community [GWIC].

The idea for Finesse was first raised in 1997, when I was visiting the Max-Planck-
Institute for Quantum Optics in Garching, to assist Gerhard Heinzel with his work on
Dual Recycling at the 30 m prototype interferometer. We were using optical simulations
which were rather slow and not very flexible. At the same time Gerhard Heinzel had
developed a linear circuit simulation [Liso] that used a numerical algorithm to solve
the set of linear equations representing an electronic circuit. The similarities of the two
computational tasks and the outstanding performance of Liso lead to the idea to use
the same methods for an optical simulation. Gerhard Heinzel kindly allowed me to copy
the Liso source code which saved me much time and trouble in the beginning; and even
today many of the Liso routines are still used in their original form inside Finesse.

In the following years Finesse was continually developed during my work at the univer-
sity in Hannover within the GEO 600 project [Willke01, GEO]. Finesse has been most
frequently utilised during the commissioning of GEO 600, some of these simulation re-
sults have been published in [Freise03, Lück, Malec, Grote] and in [Freise]. More recently
Finesse has been used during the commissioning of Advanced LIGO (see appendix D).
Finesse is now actively developed as an open source project and it is now widely used
in many other projects; the Finesse home page lists more than 60 documents citing
it [gwoptics/impact].

3

Chapter 1 Introduction

1.2 How does it work?

When the program is run, Finesse performs the following steps:

Reading a text input file: One has to write an input text file1 that describes the in-
terferometer in the form of components and connecting nodes (see Section 3.2.1). Several
commands specify the computational task and the output format. The command xaxis,
for example, defines the parameter to be tuned during the simulation.

Generating the set of linear equations: The mutual coupling of all light amplitudes
inside the interferometer can be described by linear equations. Finesse converts the list
of components and nodes given in the input file into a matrix and a ‘right hand side’ vector
(see Section 3.1.3) which together represent a set of linear equations. The calculation is
initialised by the commands in the input file.

Solving the linear equation system numerically: For each data point, the linear
set of equations is updated, the ‘right hand side’ vector is generated and the system is
solved numerically (using a sparse matrix solver such as [Sparse]). This step is repeated
for each data point and each possible light frequency (i.e. modulation sidebands).

Writing the data to an output file: After solving the system of equations, all light
amplitudes inside the interferometer are known. Finesse then computes the specified
output signals (amplitudes, powers, demodulated signals, etc.) and writes them to a text
file (extension ‘.out’). The screen output is also stored in a file with the extension ‘.log’).

Plotting the data: Finesse uses external programs to generate and display plots
of the output data, it creates a so called batch file with plotting instructions and then
calls the external program, by default Gnuplot [Gnuplot]. Gnuplot can display graphs
on screen or write the data to a file of a specified graphics format (postscript, gif, etc.)
Finesse creates an additional file (extension ‘.gnu’) that serves as a batch file for Gnuplot
and calls Gnuplot to automatically produce the plot. Gnuplot is a free program available
for different operating systems. If you do not have Gnuplot installed yet, you should do
so (http://www.gnuplot.info).

Alternatively you can use Python or Matlab to plot the data. Finesse saves a Python
file (extension ‘.py’) and a Matlab script file (extension ‘.m’). Python can be called
automatically to plot the data similar to the Gnuplot scenario described above. However,
plotting the results with Matlab has to be performed by the user: Inside Matlab, change
into the working directory containing the ‘katfilename.out’ and ‘katfilename.m’ file and
call the latter with the command ‘katfilename’ (replace ‘katfilename’ by the actual name
of the file). By using the command ‘gnuterm no’ in the input file the automatic call to
Gnuplot is suppressed.

1 There is also a graphical user interface [Luxor] that can be used to generate the input file.

4

http://www.gnuplot.info

1.3 Quick start

1.3 Quick start

This section presents some example simulations. Finesse it is very easy to use, despite
this rather voluminous manual. The manual contains much basic information about
optical systems and typical tasks in interferometer analysis. Anyone familiar with the
analysis of optical systems should be able to install Finesse and do a first calculation in
roughly half an hour. If you do not have much experience with interferometers, you can
use Finesse to learn more about them.

You can find more information online starting at www.gwoptics.org/finesse, such as
simple and advanced examples for Finesse simulations, an online reference page for
the Finesse syntax and advanced installation instructions. Further Finesse examples
in the context of advanced interferometry can also be found in the free online article
‘Interferometer Techniques for Gravitational-Wave Detection’ [Freise10].

1.3.1 Installation

The installation is simple:

- You only have to copy all files into your working directory. The required files are:
kat or kat.exe (the executable) and kat.ini, the initialisation file. In addition,
you may want to try the program using my example input files. These have the
extension *.kat.

- Finesse is a text-based application that you have to run from within a terminal
or command window. You can start the program by typing ‘kat’, which will print
a small banner; ‘kat -h’ will give you a short syntax reference for input files; ‘kat
-hh’ prints further help.

- If you want Finesse to automatically generate graphical output, you have to have
Gnuplot or Python installed and Finesse must know the correct command to start
it. You can add the command for calling Gnuplot and Python on your system to
the file ‘kat.ini’ (see Section 2.2 for more details).

- You should test the program with one of the example files: e.g. ‘kat bessel.kat’ will
cause the program to calculate light field amplitudes behind a phase modulator as
a function of the modulation strength (modulation index). The calculated data will
be written to ‘bessel.out’; also a batch file (‘bessel.gnu’) for plotting the data with
Gnuplot will be created and Gnuplot will be started.

- Please let me know if the above did not work for you!

Jan Harms has created a graphical user interface for Finesse [Luxor]2. This manual
does not consider the use of Luxor but describes the original use of Finesse, i.e. with
ASCII text files and the terminal window. Personally I would only recommend Luxor
for Finesse beginners. In my opinion the careful use of text files is preferable when the
interferometers or the simulation tasks become more complex.

2 The functionality of Luxor does not necessarily include the latest features of the current version of
Finesse. Nevertheless, it should be able to handle the majority of simulation tasks.

5

http://www.gwoptics.org/finesse

Chapter 1 Introduction

1.3.2 How to perform a simulation

In order to do a simulation, you have to create a text (ASCII) input file for Finesse that
specifies the interferometer and the simulation task. In the following sections we discuss
two example files. The first example is meant for people without much experience in
interferometry. It shows some basic syntax without any complicated optics. The second
example is aimed at people who know what a ‘transfer function’ or a ‘Pound-Drever-Hall
scheme’ is and only need to understand the input syntax of Finesse.

ss

space1 space2

mirror1

n2n1

m

nodes

Figure 1.3: A mirror (m) and two spaces (s) connected via nodes n1 and n2.

I believe that, before you start writing an input file, it is essential to first draw the
optical setup on a piece of paper. Next, you have to break down the optical system
into its components and nodes (see Section 3.2.1 for details on ‘nodes’). The components
include mirrors, lasers or ‘free spaces’, separated by nodes. When, for example, a mirror
is next to a ‘free space’ there is a node between them (see Figure 1.3). All components
and nodes have to be given a name. The name will be used to refer to the component,
either with a command in the input file, or by Finesse in warning or error messages.

An input file can consist of a series of component descriptions, commands and some
comments (text after ‘#’). Component descriptions are typically entered (one per line)
as ‘keyword name parameter-list node-list’. The mirror of Figure 1.3, for example,
can be described by

m mirror1 0.9 0.1 0 n1 n2

The keyword for a mirror is m. The name of the component, in this example mirror1,
is followed by three numerical values. These are the values for the parameters of the
component mirror, namely: power reflectivity (R), power transmission (T) and tuning
(phi) (see Section 3.3.2 for the definition of ‘tuning’). You do not have to memorise all the
parameters: calling Finesse with the command ‘kat -h’ prints a help screen that includes
a short description of the input file syntax with all component parameters. In addition, we
provide a handy online reference at http://www.gwoptics.org/finesse/reference/.

The last two entries in the component description of the mirror above are the ‘node list’.
Most components are connected to exactly two nodes. Beam splitters are connected to

6

http://www.gwoptics.org/finesse/reference/

1.3 Quick start

four nodes, a laser to one. Every node is connected to at least one component and never
to more than two, otherwise the description is inconsistent.

In the component description the keyword specifies the type of component (m for mirror,
bs for beam splitter, etc.), you can choose an arbitrary name but it must be less than
15 characters long.

Detectors are special components; they can be located anywhere in the interferometer.
Every detector defines one output variable that will be computed by Finesse. By speci-
fying several detectors, you may compute several signals at the same time.

In addition to component description, commands can be given (one per line). The com-
mands are used to initialise the simulation, they specify what output is to be computed
and which parameters are to be changed. For example, the command

xaxis space1 L lin 1 10 100

defines the x-axis of the output data. In this case it is the length (L) of the component
space1. The length will be tuned linearly lin from 1 to 10 metres in 100 steps. The xaxis

command has to be given for every simulation. Other commands are optional (like scale,
which can scale outputs by a user-defined factor). In addition, some commands can be
used to customise the graphical output.

The description of the following example input files does not include a detailed explanation
of the syntax for commands or component description. Please refer to the syntax reference
while studying the following examples. The help screen (type ‘kat -h’) gives a short
syntax reference. The full syntax reference is given in Appendix G.

Note: Text from the input files (like commands, keywords, etc.) is printed in a fixed-width

font throughout this manual.

A simple example: Bessel functions

This example features a laser, a ‘phase modulator’ (usually an electro-optic device that
can modulate the phase of a passing light beam) and ‘amplitude detectors’. Amplitude
detectors can measure the amplitude and phase of a light field. Such a device does not
exist in reality but is a very useful tool in simulations.

The phase modulation of a light field (at one defined frequency, the modulation frequency)
can be described in the frequency domain as the generation of ‘modulation sidebands’.
These sidebands are new light fields with a frequency offset to the initial light. In general,
a symmetric pair of such sidebands with a frequency offset of plus or minus the modulation
frequency is always generated. For stronger modulations, symmetric pairs at multiples of
the modulation frequency are also generated.

The amplitude of these sidebands can be mathematically described using Bessel functions
(see Section 3.4.3 for details on phase modulation and Bessel functions). In this example,
the amplitudes of three modulation sidebands are detected. The result can be used to
check whether the implementation of Bessel functions in Finesse is correct.

7

Chapter 1 Introduction

The input file ‘bessel.kat’ for this simulation looks as follows:

#---

bessel.kat test file for kat 0.70

#

freise@rzg.mpg.de 02.03.2002

#

The "#" is used for comment lines.

#

Testing the Bessel functions :

#

EOM

.-----.

| |

--> n0 | eo1 | n1 -->

| |

‘-----’

#---

l i1 1 0 n0 # laser P=1W f_offset=0Hz

mod eo1 40k .05 5 pm n0 n1 # phase modulator f_mod=40kHz

midx=0.05 order=5

ad bessel1 40k n1 # amplitude detector f=40kHz

ad bessel2 80k n1 # amplitude detector f=80kHz

ad bessel3 120k n1 # amplitude detector f=120kHz

xaxis eo1 midx lin 0 10 1000 # x-axis: midx of eo1

from 0 to 10 (1000 steps)

yaxis abs # y-axis: plot absolute

gnuterm x11 # Gnuplot terminal: X11

The only two components of the setup in this example are the laser defined by :

l i1 1 0 n0

and the modulator:

mod eo1 40k .05 5 pm n0 n1

These two components are connected via node n0, and the exit of the modulator is node
n1. The laser provides the input field at frequency 0 Hz and a power of 1 W. All frequency
values have to be understood as offset frequencies to a default frequency, which can be set
by specifying a default wavelength in the init file ‘kat.ini’. When the laser beam passes
the modulator, sidebands are added at multiples of the modulation frequency. In this
case, the modulation frequency is 40 kHz. The strength (or depth) of the modulation can
be specified by the modulation index (midx); here midx =0.5. In general, the sidebands
generated by a phase modulation with modulation frequency ωm/2π and midx = m can

8

1.3 Quick start

0 2 4 6 8 10
midx (eo1)

0

100 m

200 m

300 m

400 m

500 m

600 m

A
b
s

bessel1 n1 :

bessel2 n1 :

bessel3 n1 :

Figure 1.4: Simple example: testing the Bessel functions. (The plots shown in this man-
ual have been automatically created by Finesse using the Python batch file.)

be described by the following sum (see Section 3.4.3):

∞∑
k=−∞

i k Jk(m) ei kωm t, (1.1)

with Jk(x) as the Bessel function of order k. For small modulation indices, the Bessel
function becomes very small with increasing k. Therefore, usually only a finite part of
the above sum has to be taken into account:

order∑
k=−order

i k Jk(m) ei kωm t. (1.2)

The maximum value for k (‘order’) is set as a parameter in the component description
of the modulator (order). In this example, order is set to 5 which will result in 11 light
fields leaving the modulator: 1 laser field, 5 sidebands with positive frequency offsets
(40 kHz, 80 kHz, 120 kHz, 160 kHz, 200 kHz) and 5 sidebands with negative frequency
offsets (-40 kHz, -80 kHz, -120 kHz, -160 kHz, -200 kHz). In order to detect some of the
light fields after the modulator, we connect ‘amplitude detectors’ (ad) to node n1:

ad bessel1 40k n1

ad bessel2 80k n1

ad bessel3 120k n1

9

Chapter 1 Introduction

For each detector, a different frequency is specified (40 kHz, 80 kHz and 120 kHz). This
means that we will compute field amplitudes for three different sidebands. The setup is
now completely described. Next, we have to define the simulation task:

xaxis eo1 midx lin 0 10 1000

yaxis abs

The compulsory command xaxis specifies the parameter we want to tune during the
simulation. In this example, the parameter midx of the modulator (eo1) will be changed
linearly (lin) from 0 to 10 in 1000 steps. The command yaxis abs specifies that the
absolute values of the computed complex field amplitudes will be plotted. The command
gnuterm x11 specifies a screen output for Gnuplot in a typical Unix environment. Win-
dows users should use gnuterm windows. In addition, there are a number of predefined
graphics formats (Gnuplot terminals) for file output (like ps, eps, gif). If no Gnuplot
terminal is given Finesse uses ‘x11’ on Unix and ‘windows’ on Windows systems.

In summary, we have set up a very simple optical system which generates phase-modulated
sidebands. By running the simulation, we can now compute amplitudes of the sidebands
as a function of the modulation index. The resulting plot is shown in Figure 1.4.

A more complex example: A Fabry-Perot cavity in a Pound-Drever-Hall setup

This example consists of two sequential simulations: a) the generation of a Pound-Drever-
Hall error signal for a simple Fabry-Perot cavity, and b) the transfer function with respect
to this error signal (mirror motion to error signal).

The error signal: pdh-signal.kat The input file is:

#--

pdh-signal.kat test file for kat 0.70

(Error signal of the Pound-Drever-Hall signal)

#

freise@rzg.mpg.de 02.03.2002

#

The "#" is used for comment lines.

#

m1 m2

.-----. .-. .-.

| | | | | |

--> n0 | EOM | n1 | | n2 . s1 . n3 | |

| | | | | |

‘-----’ | | | |

‘-’ ‘-’

#--

reflectivity of first mirror set to 0.9 to get a ‘nice’ plot

10

1.3 Quick start

the setting is different in ‘pdh.kat’!

m m1 0.9 0.0001 0 n1 n2 # mirror R=0.9 T=0.0001, phi=0

s s1 1200 n2 n3 # space L=1200

m m2 1 0 0 n3 dump # mirror R=1 T=0 phi=0

l i1 1 0 n0 # laser P=1W, f_offset=0Hz

mod eo1 40k 0.3 3 pm n0 n1 # phase modulator f_mod=40kHz

midx=0.3 order=3

pd1 inphase 40k 0 n1 # photo diode + mixer

f_demod=40kHz phase=0

pd1 quadrature 40k 90 n1 # photo diode + mixer

f_demod=40kHz phase=90degrees

xaxis m2 phi lin -90 90 400 # xaxis: tune mirror m2

from -90 to 90 (400 steps)

yaxis abs # plot ‘as is’

50 0 50
phi [deg] (m2)

-300 m

-200 m

-100 m

0

100 m

200 m

300 m

A
b
s

inphase n1 :

quadrature n1 :

Figure 1.5: Second example: a Pound-Drever-Hall error signal.

The interferometer is a simple Fabry-Perot cavity that consists of two mirrors (m1) and
(m2) and a ‘free space’ (s1) in between. The laser (i1) provides an input field with a power
of 1 Watt. This beam is passed through a modulator which applies a phase modulation.
The connecting nodes are n0, n1, n2, n3.

The first components define a 1200 m long over-coupled cavity:

m m1 0.9 0.0001 0 n1 n2

s s1 1200 n2 n3

m m2 1 0 0 n3 dump

11

Chapter 1 Introduction

The cavity is resonant for the default laser frequency because the two mirror tunings (phi)
are set to zero (see Section 3.3.2). The default frequency is set by the value ‘lambda’ in
the init file ‘kat.ini’, the default value for ‘lambda’ is 1064 nm. The laser:

l i1 1 0 n0

has an offset frequency of 0 Hz, which means the laser light has the default laser frequency
and is thus resonant in the cavity. Next, we need to phase modulate the light (the Pound-
Drever-Hall scheme is a modulation-demodulation method):

mod eo1 40k 0.3 3 pm n0 n1

The Pound-Drever-Hall signal can now be generated with a photodetector and one ‘mixer’.
A mixer is an electronic device that can perform a demodulation of a signal by multiplying
it with a reference signal at the modulation frequency (local oscillator). For demodulation
one has to specify a demodulation phase. In general, when the optimum phase is not yet
known, two components of the signal, ‘in-phase’ and ‘quadrature’, are usually computed
where the demodulation phase of the ‘quadrature’ signal has a 90-degree offset to the
‘in-phase’ demodulation:

pd1 inphase 40k 0 n1

pd1 quadrature 40k 90 n1

These two detectors detect the light power reflected by the mirror (m1) and demodulate
the signal at 40 kHz. The typical Pound-Drever-Hall error signal is plotted as a function
of the mismatch of laser frequency to cavity resonance. In this example, we choose the
xaxis to be the microscopic position of the second mirror:

xaxis m2 phi lin -90 90 400

The command xaxis defines the parameter that is varied during the simulation. At the
same time, it defines the x-axis of the output (plot). Here, the previously defined mirror
(m2) is moved by changing the tuning (phi) linearly (lin) from -90 degrees to 90 degrees
in 400 steps. This starts the simulation with the cavity being anti-resonant for the laser
light and sweeps the cavity through the resonance until the next anti-resonance is reached.
The resulting plot is shown in Figure 1.5.

The transfer function: ‘pdh.kat’ The second part of this example is very similar to
the first part; it also employs a Fabry-Perot cavity with a Pound-Drever-Hall setup.
This time, however, we are not interested in the error signal as a function of a mirror
position, but in the transfer function of the optical system in a potential feedback loop.
We assume that an actuator can move the input mirror (m1) and we want to know the
transfer function from a displacement of m1 to the output of the photodetector plus mixer
(from the previous example). Please note that the cavity parameters are now different.
The input file is:

12

1.3 Quick start

#---

pdh.kat test file for kat 0.99

(Transfer function of the Pound-Drever-Hall signal)

#

adf@rzg.mpg.de 07.02.2005

#

#

m1 m2

.-----. .-. .-.

| | | | | |

--> n0 | EOM | n1 | | n2 . s1 . n3 | |

| | | | | |

‘-----’ | | | |

‘-’ ‘-’

#--

m m1 0.9999 0.0001 0 n1 n2

s s1 1200 n2 n3

m m2 1 0 0 n3 dump

l i1 1 0 n0

mod eo1 40k 0.3 3 pm n0 n1

fsig sig1 m1 10 0

pd2 inphase 40k 0 10 n1

xaxis sig1 f log .01 100 400

put inphase f2 $x1

yaxis db:deg

Most of the above is similar to the previous example. Only one new component has been
added:

fsig sig1 m1 10 0

This is the signal frequency. It can be understood as connecting the source from a
network analyser to an actuator which can move mirror m1. This means a periodic signal
called sig1 now ‘shakes’ the mirror at 10 Hz (phase=0). The periodic movement of the
mirror can be described as a phase modulation of the light that is reflected by the mirror,
i.e. phase modulation sidebands are generated.

The photodetector used in the previous example to compute the Pound-Drever-Hall error
signal has to be extended by another mixer to detect the field amplitude at the signal
frequency :

pd2 inphase 40k 0 10 n1

13

Chapter 1 Introduction

10-2 10-1 100 101 102

f [Hz] (sig1)

45

50

55

60

65

70

75

80

85

90
d
B

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

P
h
a
se

 [
D

e
g
]

 n1 : dB

 n1 : Phase [Deg]

Figure 1.6: Second example: the transfer function of the a Pound-Drever-Hall error signal
(mirror motion to error signal).

The first demodulation at 40 kHz (demodulation phase 0 degrees) is still the same as
before. The second demodulation is at 10 Hz, the signal frequency. You will note that
for the second demodulation no demodulation phase is given. If the demodulation phase
is not given, the output is (mathematically) simply a complex number representing the
amplitude and relative phase of the error signal at the signal frequency3. If we now sweep
the signal frequency (simultaneously at the source and the second mixer), we will get a
transfer function. This can be done by the following commands:

xaxis sig1 f log .01 100 400

put inphase f2 $x1

The parameter to be swept is sig1, the signal frequency. In order to always compute
the transfer function, the frequency of the second demodulation at the photodetector
must also be changed accordingly. This is assured by the put command. put sets an
interferometer parameter to the value of a variable. In this case it puts the x-axis value
x1 to the second frequency of the photodetector (f2). The resulting plot is shown in
Figure 1.6.

3 In an experiment, this is slightly more complex: a network analyser would perform the demodulation
at the signal frequency twice with two different demodulation phases and then calculate the amplitude
and phase of the signal

14

Chapter 2

The program files

2.1 kat—the main program

The name of the binary, i.e. the command to start Finesse is ‘kat’. The syntax is:
kat [options] infile [outfile [gnufile]]

or
kat [options] basename

where e.g. basename ‘test’ means input filename : ‘test.kat’, output filename : ‘test.out’
and Gnuplot batch filename : ‘test.gnu’ (parameters in square brackets are optional).
The input file has to be provided by the user, output and Gnuplot files are created by
Finesse. Available options :

-h : prints first help screen with short syntax reference
-hh : prints second help screen with some conventions
-v : prints version and exits
-c : forces consistency check of interferometer matrix (slow)
-max : prints maximum and minimum of every plot
-klu : forces KLU sparse matrix solver
-sparse : forces SPARSE sparse matrix solver
--noheader : suppresses the printing header information in output data files
--server : starts Finesse in server mode (see 7.2.2)
--perl1 : suppresses the printing of the banner and Gnuplot command
--convert : converts knm files between text and binary formats, see appendix E.
--quiet : suppresses almost all screen outputs

2.2 kat.ini—the init file for kat

The file ‘kat.ini’ is read when the program is started. It is a text file in which some
program parameters can be defined.

For Finesse to find the ‘kat.ini’ file you have to either place one copy into the current
working directory (i.e. the directory containing the Finesse input files you are working
with), or you specify a global variable ‘KATINI’ on you computer which contains the full
path to a ‘kat.ini’ file. Please refer to help service of your operating system in order find

15

Chapter 2 The program files

out how to set such a variable. On many Unix-like system this can be done by adding
some command like:

export KATINI=$HOME/work/kat/kat.ini

to a configuration file.

The following parameters can be set within the ‘kat.ini’ file:

clight : speed of light
lambda : main wavelength of the input laser light (‘lambda’ sets λ0 and thereby
defines ω0)
deriv h : step size for numerical differentiation (this parameter can be overwritten
in the input file with the same syntax, i.e. deriv_h value see also page 220)
qeff : quantum efficiency of photodetectors
epsilon c : εc = ε0 · c used for relating light power to field amplitudes, P = εc|EE∗|
n0 : default refractive index for spaces
gnuversion : version number of your Gnuplot binary (a two digit number, for ex-
ample, 4.2)
PDTYPE : photodetector definition (see also page 206)
GNUCOMMAND : system command to start Gnuplot
GNUTERM : Gnuplot plotting terminal description
PYTHONCOMMAND : system command to start Python
PYTERM : Python plotting terminal description
PLOTTING : selecting default plotting program (Gnuplot/Python)
quantum_scaling: Sets how all photodiode quantum noise outputs are scaled: 1 -
PSD, 2 - PSD in units of hf, 3 - ASD, 4 - ASD in units of

√
hf . ASD = amplitude

spectral density, PSD = power spectral density.

The following parameters can be used for customising the locking algorithm :

locksteps : total number of steps for trying to achieve the locking condition
autostop : if set to 1, stop locking after first failure
sequential : bit coded, 0/1 sequential off/on, 5 first lock sequential. A sequential
lock includes a lock hierarchy based on the order of the lock commands in the input
file. The first lock is kept at zero while the second is changing, the first two are
kept locked while the third is changing etc. The sequential lock has proven to be
slower but more successful in finding the operating point. Often it is convenient
to use sequential locking only for the first data point and then switch to the faster
parallel locking in which all loops are iterating together.
autogain : switch for the automatic gain control, 0/1/2 = off/on/verbose
lockthresholdlow : threshold for ‘gain too low’ check
lockthresholdhigh : threshold for ‘gain too high’ check
locktest1 : number of steps to wait until loop gain is checked
locktest2 : number of checks to be invalid before the gain is changed
gainfactor : in case of action, change gain by this factor

The ‘#’ sign is used for comment lines, and parameters are specified as ‘name value’,

16

2.2 kat.ini—the init file for kat

e.g. ‘clight 300000000.0’. If the program cannot read or find the ‘kat.ini’ file it uses the
following default values:

clight : 299792458.0
lambda : 1.064e-6
deriv h : 1e-31

qeff : 1.0
epsilon c : 1.0
n0 : 1.0
gnuversion : 4.2
GNUCOMMAND : ‘c:\programs\gnuplot\wgnuplot.exe’ for Windows systems, ‘gnu-
plot -persist’ for Linux systems and ‘/sw/bin/gnuplot -persist’ on OS X.
locksteps : 10000
autostop : 1
sequential : 5
autogain : 2
lockthresholdlow : 0.01
lockthresholdhigh : 1.5
locktest1 : 5
locktest2 : 40
gainfactor : 3

The Gnuplot terminal ‘x11’ or ‘windows’ is selected with respect to the operating system.
In order to plot the data with Gnuplot you may have to adjust GNUCOMMAND which
is the system command used by Finesse to start Gnuplot. The command must include
the full pathname and all options.

Several Gnuplot terminals are predefined in ‘kat.ini’. The syntax is as follows:

GNUTERM name

(some Gnuplot commands like e.g.:

set term postscript eps

set title

...)

END

Please read the Gnuplot manual for information about the Gnuplot commands.

Similarly, if you prefer to create the graphical output with Python you need to adjust
the PYTHONCOMMAND and can add details using the PYTERM commands. Finally,
the command PLOTTING may be used to define the default plotting, i.e. Gnuplot or
Python. Note that in all cases the script files fro plotting with Gnuplot, Python and
Matlab will be generated, so that you can conveniently plot the result with any of these
program at a later time.

Furthermore, the file ‘kat.ini’ hosts definitions for photodetector types that have some
special features with respect to the detection of Hermite-Gauss modes. Please also see

1 Note that you have to use a smaller value for ‘deriv h’ if you use alignment angles because the angles
are typically of the order of 1e-6 and ‘deriv h’ must be smaller.

17

Chapter 2 The program files

Section 4.8.3 and page 206 for an explanation of these detector definitions. Many different
types of real detectors (like split detectors) or (spatially) imperfect detection can be
simulated using this feature. The syntax for the type definitions:

PDTYPE name

...

END

Between PDTYPE and END several lines of the following format may be given:

1. ‘0 1 0 2 1.0’, the beat between TEM01 and TEM02 is scaled by a factor of 1.0
2. ‘0 0 * 0 1.0’, ‘*’ means ‘any’: the beats of TEM00 with TEM00, TEM10, TEM20,

TEM30, etc. are scaled by a factor of 1.0
3. ‘x y x y 1.0’, ‘x’ or ‘y’ also means ‘any’ but here all instances of ‘x’ are always

the same number (likewise for ‘y’). So, in this example, all beats of a mode with
itself are scaled by 1.0

All beat signals not explicitly given are scaled by 0.0. Please take care when entering a
definition, because the parser is very simple and cannot handle extra or missing spaces
or extra characters. The file ‘kat.ini’ in the Finesse package includes the definitions for
split photodetectors.

2.3 *.kat—the input files (how to do a calculation)

The program does not work interactively, i.e. all the information about the optical setup
and the calculation task has to be stored in one input text file before the program is called.
This section describes the syntax of the input files. For a better understanding please
also look at the online examples. In addition, Appendix G gives an extensive syntax
description. Together with the given examples this should allow one to understand the
input file syntax for all possible simulation tasks.

A line of the input file can be empty, specify one component, or specify one command.
Text after a ‘#’ sign is treated as a comment. A component entry has the following syntax:

component_type name parameter_list node_list

Component names and node names must be less than 15 characters long. For
example a mirror can be specified by

m mirror1 0.9 0.1 0 n1 nout3

where ‘m’ is the keyword for the component mirror, ‘mirror1’ is the name of the component.
The parameter list of a mirror is ‘power-reflectivity power-transmittance tuning’ or in
short ‘R T phi’. The above example therefore specifies a mirror with R=0.9, T=0.1 and
phi=0 connected to nodes ‘n1’ and ‘nout3’.

Node names can be chosen by the user and must not be longer than 15
characters. If a special node has only one connection and will not be used for detection
either, the special name ‘dump’ can be used to indicate a beam dump. This does not

18

2.4 *.out—the output files

affect the results but reduces the set of linear equations by one and thus speeds up the
calculation.

Note that even if you want to tune (or sweep) a certain parameter you have
to enter a fixed value at the proper place first. Imagine that you have to build
the full interferometer before you start moving or shaking things. The commands then
follow the interferometer description.

2.4 *.out—the output files

The output files (*.out) are the main output of Finesse, i.e. they contain the result of
the simulation run. These files contain the calculated pure data in text format. The first
three lines are a header containing information about the simulation and the output data,
a typical header might look like:

% Finesse 0.99.8 (3200), 11.06.2008

% 2D plot, y1axis: Abs

% phi [deg] (m1), tr1, tr2

The first line contains the version, build number and build date of the Finesse binary.
The second line defines whether the data refers to a 2D or 3D plot and what y-axes have
been specified. The third line then gives the labels of the data columns, i.e. the name of
the x-axis (or x-axes), in this case ’phi [deg] (m1)’, and the names of the detectors, here
’tr1’ and ’tr2’.

The ’%’ sign is used as a comment char in this case because Matlab and Gnuplot can
recognise this as a comment char. If your Gnuplot version complains about the header
you can try to add the following to your Gnuplot configuration file:

set datafile commentschars "#!%"

Alternatively you can of course run Finesse with the --noheader option, which suppresses
the header in the output files.

The header is followed by the data, stored in rows and columns:

x y1 [y2 y3 y4 ...] for 2D plots

x1 x2 y1 [y2 y3 y4 ...] for 3D plots

where x1 is the first x-axis, in 3D plots x2 is used for the second x-axis. The y values
correspond to various graphs, for example:

x amplitude1 phase1 amplitude2 phase2

19

Chapter 2 The program files

2.5 *.gnu—the Gnuplot batch files

These files are batch files for Gnuplot. They are text files with a few simple commands
that tell Gnuplot which file it should read and how it should plot it. You can easily
change the file yourself to vary the look of the plot or to do some calculations within
Gnuplot with the data. Be aware that if you don’t rename the file, other runs with the
same input file will overwrite the Gnuplot batch file.

2.6 *.m—the Matlab script files

These files are Matlab input files containing the necessary commands to plot the data in
the ‘.out’ files with Matlab. To do so, start Matlab, then inside Matlab, change into the
working directory containing the ‘katfilename.out’ and ‘katfilename.m’ file and call the
latter with the command ‘katfilename’ (replace ‘katfilename’ by the actual name of the
file). Please note that Matlab does not recognise all filenames, for example, you must
not use minus or plus signs in Matlab script names. Therefore Finesse will replace any
’-’ in the basename by ’ ’ for creating the corresponding name of the Matlab file. Again,
please be aware that if you don’t rename the file, other runs with the same input file will
overwrite the Matlab file.

The Matlab files actually are not scripts but contain function. In order to get more
information about using these you can get help by typing help katfilename (again replace
‘katfilename’ with the actual name of the file). This should print something like:

--

function [x,y,z] = katfilename(noplot)

Matlab function to plot Finesse output data

Usage:

[x,y,z] = katfilename : plots and returns the data

[x,y,z] = katfilename(1) : just returns the data

katfilename : just plots the data

Created automatically Wed Jun 11 11:34:17 2008

by Finesse 0.99.8 (3200), 08.06.2008

--

This explains the three different possibilities to call the function and either load the data,
plot the data or do both.

2.7 *.py—the Python script files

Similarly, these files are Python scripts that include the necessary commands to plot the
Finesse output with Python, using matplotlib.

This top comment block shows the usage:

20

2.7 *.py—the Python script files

"""---

Python file for plotting Finesse ouput ttt.out

created automatically Thu Apr 25 00:40:52 2013

Run from command line as: python ttt.py

Load from python script as: import ttt

And then use:

ttt.run() for plotting only

x,y=ttt.run() for plotting and loading the data

x,y=ttt.run(1) for only loading the data

---"""

21

22

Chapter 3

Mathematical description of light beams
and optical components

3.1 Introduction

The following sections provide information about how the various aspects of an inter-
ferometer simulation are coded within the Finesse source code. The analysis of optical
systems described here is based on the principle of superposition of light fields: a laser
beam can be described as the sum of different light fields. The possible degrees of freedom
are:

- frequency,
- geometrical shape and position,
- polarisation.

In the analysis of interferometric gravitational wave detectors, the amplitudes and fre-
quencies of light fields are of principal interest. The polarisation is neglected in the
analysis given here, but the formalism can in principle be easily extended to include
polarisation also.

This chapter describes the mathematical formalism based on plane waves only. In Chap-
ter 4 the formalism with respect to Hermite-Gauss modes will be given; it is a straight-
forward extension of the plane wave analysis and makes use of the methods described
here.

3.1.1 Static response and frequency response

The optical system shall be modelled by a set of linear equations that describes the light
field amplitudes in a steady state. When a vector of input fields is provided, the set of
linear equations can be mathematically solved by computing a solution vector that holds
the field amplitudes at every component in the optical system.

The analysis provides information about the light field amplitudes as a function of the
parameters of the optical system. Two classes of calculations can be performed:

23

Chapter 3 Mathematical description of light beams and optical components

a) Static response: Computing the light field amplitudes as a function of a quasi-
static change of one or more parameters of the optical components. For example,
the amplitude of a light field leaving an interferometer as a function of a change
in an optical path length. The settling time of the optical system can usually
be estimated using the optical parameters. Parameter changes that are negligible
during the settling time can be assumed to be quasi-static. In a well-designed
optical system many parameter changes can be treated as quasi-static so that the
static response can be used to compute, for example, the (open-loop) error signal
of the optical system’s control loop.

b) Frequency response: In general, the frequency response describes the behaviour
of an output signal as a function of the frequency of a fixed input signal. In other
words, it represents a transfer function; in this context, a transfer function of an
optical system. The input signal is commonly the modulation of light fields at
some point in the interferometer. The frequency response allows computation of
the optical transfer functions as, for example, required for designing control loops.

3.1.2 Transfer functions and error signals

Two common tasks for interferometer analysis are the computations of error signals and
optical transfer functions. Both are important for the design of servo loops to control
the interferometer. In an interferometer, several degrees of freedom for the optical com-
ponents exist (e.g. positions, alignment angles) and active stabilisation is necessary to
enhance the sensitivity.

An error signal is the output of a sensor (or in general a measurable signal) as a function
of one degree of freedom (of the interferometer). The transfer function now gives the
frequency-dependent coupling of a signal that is present in that particular ‘degree of
freedom’ into the error signal.

Transfer functions can be used to compute the coupling of noise in the interferometer
and thus to estimate the sensitivity. The following sections give an introduction into the
computation of error signals and transfer functions with Finesse.

Modulation-demodulation methods

Several standard techniques exist to generate error signals for controlling an interfer-
ometer. Many of them use modulation-demodulation schemes in which at some point
inside the optical setup a light field is modulated (in phase or amplitude) at a fixed fre-
quency. To derive error signals, the output of a photodetector is then demodulated (using
a mixer) at that frequency. Modulation-demodulation is a well known technique which
is commonly used for the transmission of low frequency signals (e.g. radio transmission).
It has the advantage of shifting low frequency signals to higher frequencies. Typically,
many noise contributions are frequency dependent such that the noise decreases at higher

24

3.1 Introduction

frequencies. Therefore, the signal-to-noise ratio can be enhanced in many cases using
modulation-demodulation.

Error signals

In general, an error signal is an output of any kind of detector that is suitable for stabilising
a certain parameter p with a servo loop. Therefore, the error signal must be a function
of the parameter p. In most cases it is preferable to have a bipolar signal with a zero
crossing at the operating point p0. The slope of the error signal at the operating point
is a measure of the ‘gain’ of the sensor (which in general is a combination of optics and
electronics).

Transfer functions

Transfer functions describe the propagation of a periodic signal through a plant and are
usually given as frequency plots of amplitude and phase. A transfer function describes the
linear coupling of signals inside a system. This means a transfer function is independent
of the actual signal size. For small signals or small deviations, most systems can be
linearised and correctly described by transfer functions.

Experimentally, network analysers are commonly used to measure a transfer function:
One connects a periodic signal (the source) to an actuator of the plant (which is to be
analysed) and to an input of the analyser. A signal from a sensor that monitors a certain
parameter of the plant is connected to the second analyser input. By mixing the source
with the sensor signal the analyser can determine the amplitude and phase of the input
signal with respect to the source (amplitude equals one and the phase equals zero when
both signals are identical).

In Finesse transfer with the limitation that all plants are—of course—optical systems.
The command:

fsig name component [type] f phase [amp]

specifies the source signal. One has to set a frequency and a phase and can optionally
set an amplitude and the type of the signal. Giving an amplitude or phase makes sense
only if the frequency is applied to more than one component and the relative driving
phases and amplitudes are of interest. A signal can be added to the following
components: mirror, beam splitter, space, input, and modulator. All of these
can add a modulation to a light field, i.e. they can act dynamically on the light field
amplitudes. In all cases the modulation is only applied to laser fields or RF modulation
sidebands (i.e. those which are generated by a modulator component). The practical
reason for this restriction is the difficulty of avoiding endless loops when signal sidebands
are generated around signal sidebands. From the physics point of view the restriction also
makes sense since transfer functions can be calculated with infinitesimally small signals
(i.e. perturbations of order ε) so that all terms of the order ε2 can be omitted. In addition

25

Chapter 3 Mathematical description of light beams and optical components

 -2

 -1

 0

 1

 2

-1 -0.5 0 0.5 1

E
rr

or
 s

ig
na

l x
E

P
 [a

rb
. u

ni
ts

]

Mirror displacement xd [arb. units]

operating point

‘error signal slope’
xEP

x =0d

d
dxd

0.1

1

10

1 10 100 1000 10000

T
ra

ns
fe

r
fu

nc
tio

n
x d

 -
>

 x
E

P
 [a

rb
. u

ni
ts

]

Signal frequency [Hz]

d

f 0

|T |opt, x

Figure 3.1: Example of an error signal: the top graph shows the electronic interferometer
output signal as a function of mirror displacement. The operating point is given as the
zero crossing, and the error-signal slope is defined as the slope at the operating point.
The bottom graph shows the magnitude of the transfer function mirror displacement→
error signal. The slope of the error signal (upper graph) is equal to the low frequency
limit of the transfer function magnitude (see Equation 3.3).

to supply a constant phase and amplitude as above, you can also define a transfer function
as the scaling as a function of frequency

fsig name component [type] f transfer_function

On defining transfer functions see section 3.1.2. The signal frequency is also has a special

26

3.1 Introduction

variable associated with it that can be used in functions and detector commands: $fs for
positive and $mfs for the negative signal frequency.

In Finesse, modulation at the signal frequency is realised by adding two signal sidebands
to the light field. Applying the signal to the various components results in different am-
plitudes and phases of these sidebands. The exact numbers for each possible component
are given in Section 3.4.5. The detection of the signal for creating a transfer function is
included in the photodetector components pd (see below).

Figure 3.1 shows an example of an error signal and its corresponding transfer function.
The operating point will be at:

xd = 0 and xEP(xd = 0) = 0 (3.1)

The optical transfer function Topt,xd
with respect to this error signal is defined by:

x̃EP(f) = Topt,xd
Tdetx̃d(f), (3.2)

with Tdet as the transfer function of the sensor. In the following, Tdet is assumed to be
unity. At the zero crossing the slope of the error signal represents the magnitude of the
transfer function for low frequencies:∣∣∣∣dxEP

dxd

∣∣∣∣ ∣∣xd=0

= |Topt,xd
| ∣∣f→0

(3.3)

The quantity above will be called the error-signal slope in the following text. It is propor-
tional to the optical gain |Topt,xd

|, which describes the amplification of the gravitational
wave signal by the optical instrument.

User-defined transfer functions

Transfer functions are also used in Finesse for radiation pressure computations and
linking of components. Such transfer functions describe a frequency dependent signal;
the signal can represent, for example, how a force applied to a component results in a
motion, or the change of an electronic signal between a photodiode output and an mirror
actuator.

The transfer function commands in Finesse are generic and do not express the units
or meaning of the signal transformation. The tf command is used to define a transfer
function as a sum of poles and zeros,

tf name factor phase [p/z f1 Q1 [p/z f2 Q2] [p/z f3 Q3 ...]]

factor and phase are the overall gain and phase of the transfer function.

The number of poles and zeros is not limited, for example you can specify none of either
to get a flat transfer function at all frequencies. the option p/z is exclusive-or, p being

27

Chapter 3 Mathematical description of light beams and optical components

to define a pole and z a zero. You then state the frequency of the pole or zero and the
quality factor of the resonance: 0 < Q < 0.5 is over-damped, Q = 0.5 critically damped
and Q > 0.5 is under-damped.

For example, if for radiation pressure modelling we want to specify the transfer function
from force applied to longitudinal motion for a single pendulum with resonance at 2 Hz
and a quality factor Q = 106, you would use the command:

tf sus 1 0 p 2 1M

There is also the option to specify complex values directly for the poles and zeros:

tf2 name factor phase {p1,p2,...} {z1,z2,...}

Instead of supplying the resonance frequency and quality factor we state a string of
complex numbers for the poles and zeros. Each pole and zero should always be a conjugate
pair. The curly braces should always be present even if no pole or zeros are added, for
example

tf2 sus 1 0 {} {}

would be a valid command. Or we can define some values

tf2 sus 1 0 {1+100i,1-100i,0+10i+0-10i} {10+200i,10-200i,2+0i,2-0i}

Note that we have defined conjugate pairs, there are no spaces, we always state the real
and imaginary parts even if they are numerically 0 and that the letter i always comes
after the numerical value of the imaginary part. The parsing of these complex numbers
is fragile and these rules mut be followed carefully.

3.1.3 The interferometer matrix

The task for Finesse is to compute the coupling of light field amplitudes inside a given
interferometer. Finesse assumes the following simplifications:

• the interferometer can be described via linear coupling of the light field amplitudes,
• there is no polarisation of the light, nor polarising components,
• the frequency of a given light field is never changed, in particular frequency shifting

is not possible.

With these simplifications all interactions at optical components can be described by a
simple set of linear equations. For a given number of input fields this set of equations can
be ‘solved’ (either numerically or analytically) and the output fields can be computed.
Finesse first creates local matrices with the local coupling coefficients for every optical
component. Next, the full interferometer matrix is compiled from these ‘local’ coupling
matrices. The full interferometer matrix then transforms a vector with all local fields (the
‘solution’ vector) into a vector that contains non-zero entries for the input light fields in

28

3.2 Conventions and concepts

all interferometer inputs. The latter is called the ‘right hand side’ (RHS) vector. interferometer
matrix

×
 ~xsol

 =

 ~xRHS

 (3.4)

The number of rows (the matrix is of the type n × n) is determined by the number of
distinct light field amplitudes inside the interferometer. If, for example, we consider only
one frequency component and one geometrical mode, exactly two light fields are present
at every node and the number of rows is two times the number of nodes.

Finesse makes a clear distinction between types of optical fields: carrier fields, which
are those created by a laser component and their sidebands create by modulator com-
ponents; signal fields, which are always considered much smaller in magnitude than any
carrier field; and quantum sideband fields, which is descibed in more detail in later chap-
ters. Each field type is solved with a separate matrix, the carrier matrix solves all carrier
fields, the signal matrix solves all the signal fields, and the quantum sideband matrix
solves all the quantum fields; these will be refered to at various points in later chapters.
The carrier matrix is always solved first and the values computed are used to create
sources for the signal fields, thus it is always assumed that signal fields in no way affect
the carrier fields.

The RHS vector consists mostly of zeros since usually there are only a few distinct sources
of light in an interferometer. These sources are ‘lasers’ for the carrier matrix and ‘signals’
that are applied to various optical components for computing transfer functions in the
signal matrix. The ‘signals’ shift light power from carrier light fields at a specified fre-
quency, called the signal frequency typically denoted as fs, therefore they can be treated
as light sources (in general as devices that can create or destroy light power at a given
frequency).

Naturally, the entries in the matrix and in the RHS vector change during a simulation. In
fact, the coefficients of the matrix are updated every time a parameter has been changed.
Then an RHS vector is set up and the system of linear equations is solved numerically.
The solution vector is computed and thus the field amplitudes at all nodes and for all
frequencies inside the interferometer.

3.2 Conventions and concepts

This section presents an overview of the conventions and definitions that are used in
Finesse. Several methods for describing the same physics are commonly used. Therefore,
the knowledge of the definitions used by Finesse is essential for understanding the syntax
of the input files, the results of the computation and, in some cases, the descriptions in
this manual.

29

Chapter 3 Mathematical description of light beams and optical components

3.2.1 Nodes and components

The interferometer has to be specified as a group of components connected by ‘nodes’.
For example, a two mirror Fabry-Perot cavity as in Figure 3.2 could be:

• mirror one (m1) with nodes n1 and n2

• free space (s) with nodes n2 and n3

• mirror two (m2) with nodes n3 and n4

n3 n4n1 n2 s

m

mirror1 mirror2

space

m

Figure 3.2: A simple Fabry-Perot cavity shown as components and nodes.

Node n2 connects mirror mirror1 to space s and node n3 connects space s to mirror
mirror2. The nodes n1 and n4 are now the input and output nodes of the cavity. The
program calculates the light fields at all nodes. As opposed to reality, you can put a
detector at every node without disturbing the interferometer. Two light fields are
present at every node: one in each direction of propagation, e.g. in the example
above at node n2, one light field approaching the mirror mirror1 from the right and one
leaving the mirror mirror1 to the right. If a detector is located at node n2, only one
of these two fields is detected; you have to know (or specify) which. If the node where
you put a detector has only one connection (like n4 above), the non-empty light field
(i.e. coming from the mirror mirror2) is chosen automatically. If the node is inside the
system (e.g. n2) the beam going into a space coming from a different component
is usually detected. If there are no spaces in between, the following rules apply in the
given order:

• if a mirror is connected to the node, the beam coming from the mirror is detected,
• if a beam splitter is connected to the node, the beam coming from the beam splitter

is detected,
• if a modulator is connected to the node, the beam coming from the modulator is

detected,
• if two components of the same type (i.e. two mirrors) are connected to the node,

the beam coming from the first specified component (in the input file) is detected.

The rules above state which beam is detected by default. Of course, you can specify
that the respective other beam should be detected (see syntax reference for ‘ad’ or ‘pd’ in
Appendix G).

30

3.2 Conventions and concepts

3.2.2 Mirrors and beam splitters

The main components of interferometers in Finesse are mirrors and beam splitters.
Following the implementation of the respective numerical methods used in Finesse the
mirrors and beam splitters are defined in a slightly counter-intuitive way:

• mirrors (m) are defined as single optical surfaces with two nodes
• beam splitters (bs) are defined as single optical surfaces with four nodes

In other words, a mirror always retro-reflects a beam into the incoming node while a
beam splitter separates the reflected beam from the incoming beam.

The counter-intuitive part in this is that when a real beam splitter (i.e. a partial reflective
surface) is used under normal incidence we would still call it a beam splitter while in
Finesse it has to be modeled as mirror. On the other hand if we employ a mirror as a
turning mirror, a mirror of R = 1 with an angle of incidence of 45 degrees, this must be
modelled as a beam splitter in Finesse.

In short the terms mirror and beam splitter do not refer to the reflectance or transmission
of the optical surface nor how the modelled optic is used in practise, the difference is solely
defined by the angle of incidence of the incoming beam.

Please note also that even though many diagrams in this manual depict mirrors and beam
splitters as components with two surfaces the actual components m and bs represent sin-
gle optical surfaces. Such surfaces of course do not resemble physical objects as such.
However, they can be used to model simplified interferometer layouts. In more detailed
optical layouts it is often wise to use more realistic models for the optical components:
a ’real’ mirror or beam splitter would consist of two optical surfaces with a substrate in
between. To model this one needs to employ a number of basic Finesse components. A
mirror then can be modeled as:
m Mfront ...nM1 nMi1

s Msubstrate ...nMi1 nMi2

m Mback ...nMi2 nM2

A beam splitter is more complex because the outgoing beams would pass the back surface
at different location. Finesse cannot handle this directly, instead one has to consider the
two locations at the back surface as two independent components (this also makes sense
in practice since the surface properties for the two locations are not necessarily equal).
Thus a beam splitter can be modeled as:
bs BSfront ...nBS1 nBS2 nBSi1 nBSi3

s BSsubstrate1 ...nBSi1 nBSi2

s BSsubstrate2 ...nBSi3 nBSi4

bs BSback1 ...nBSi2 nBS3

bs BSback2 ...nBSi4 nBS4

31

Chapter 3 Mathematical description of light beams and optical components

3.3 Frequencies and wavelengths

Finesse distinguishes between three types of light fields:

• laser light (input light),
• modulation sidebands (generated by the component ‘modulator’: mod), and
• signal sidebands (generated by the command ‘signal frequency’: fsig).

Throughout this manual, different representations for the frequencies of light fields are
used: wavelength (λ), frequency (f), or angular frequency (ω). In Finesse it is simpler:
in the file ‘kat.ini’ the default laser frequency is defined via a wavelength λ0. All other fre-
quencies must be given as frequency offsets (not angular frequency) to that reference.
The terms ‘carrier’ frequency or ‘carrier’ light are used in this manual to refer to a light
field that is subject to some kind of modulation, either by a modulator or a signal. The
modulation will create ‘sidebands’ around the ‘carrier’. Laser light fields can be carriers.
But also modulation sidebands created by the component mod can serve as carrier fields
to subsequent modulations.

A modulator can be used as a phase or amplitude modulator. In addition, a modulator
can be used in the single sideband mode so that only one modulation sideband is added
to the laser field. Signal frequencies perform a modulation on input fields and modulation
sidebands from a modulator but not on other signal sidebands.

3.3.1 Phase change on reflection and transmission

When a light field passes a beam splitter, a phase jump in either the reflected, transmitted,
or both fields is required for energy conservation; the actual phase change for the different
fields depends on the type of beam splitter (see [Rüdiger] and [Heinzel]). In practice, the
absolute phase of the light field at a beam splitter is of little interest so to calculate
interferometer signals one can choose a convenient implementation for the relative phase.
Throughout this work, the following convention is used: mirrors and beam splitters are
assumed to be symmetric (not in how they split the light power but with respect to the
phase change) and the phase is not changed upon reflection; instead, the phase changes
by π/2 at every transmission.

Be aware that this is directly connected to the resonance condition in the simulation: if,
for example, a single surface with power transmittance T = 1 is inserted into a simple
cavity, the extra phase change by the transmission will change the resonance condition
to its opposite. Inserting a ‘real’ component with two surfaces, however, does not show
this effect.

3.3.2 Lengths and tunings

The interferometric gravitational wave detectors typically use three different types of
light fields: the laser with a frequency of f ≈ 2.8 ·1014 Hz, modulation sidebands used for

32

3.4 The plane-wave approximation

interferometer control with frequencies (offsets to the laser frequency) in the MHz range,
for example f ≈ 30 · 106 Hz, and the signal sidebands at frequencies of 10 Hz to 1000 Hz1.

The resonance condition inside the cavities and the operating point of the interferometer
depend on the optical path lengths modulo the laser wavelength, i.e. for the light of
a Nd:YAG laser length differences of less than 1µm are of interest, not the absolute
length. The propagation of the sideband fields depends on the much larger wavelength of
the (offset) frequencies of these fields and thus often on absolute lengths. Therefore, it is
convenient to split distances D between optical components into two parameters [Heinzel]:
one is the macroscopic ‘length’ L defined as that multiple of the default wavelength λ0

yielding the smallest difference to D. The second parameter is the microscopic tuning
that is defined as the remaining difference between L and D. This tuning is usually given
as a phase φ (in radian) with 2π referring to one wavelength2. In Finesse tunings are
entered and printed in degrees, so that a tuning of φ = 360 degrees refers to a change in
the position of the component by one wavelength (λ0).

This convention provides two parameters that can describe distances with a markedly
improved numerical accuracy. In addition, this definition often allows simplification of
the algebraic notation of interferometer signals.

In the following, the propagation through free space is defined as a propagation over a
macroscopic length L, i.e. a free space is always ‘resonant’, i.e. a multiple of λ0. The
microscopic tuning appears as a parameter of mirrors and beam splitters. It refers to a
microscopic displacement perpendicular to the surface of the component. If, for example,
a cavity is to be resonant to the laser light, the tunings of the mirrors have to be the
same whereas the length of the space in between can be arbitrary.

Note that if you change the frequency of the input lasers the spaces are still resonant to
the default wavelength λ0 (as given in ‘kat.ini’) and not to the wavelength of the input
light.

3.4 The plane-wave approximation

In many simulations the shape of the light beams or, in general, the geometric properties
of a beam transverse to the optical axis are not of interest. In that case one can discard
this information and restrict the model to the field on the optical axis. This is equivalent
to a model where all light fields are plane waves traveling along one optical axis. This is
the standard mode of Finesse and is called plane-wave approximation in the following.

In the plane-wave approximation all light fields are described in one dimension. All beams
and optical components are assumed to be centered on the optical axis and of infinite size.

1 The signal sidebands are sometimes also called audio sidebands because of their frequency range.
2 Note that in other publications the tuning or equivalent microscopic displacements are sometimes

defined via an optical path length difference and then often 2π is used to refer to the change of the
optical path length of one wavelength which, for example, if the reflection at a mirror is described,
corresponds to a change of the mirror’s position of λ0/2.

33

Chapter 3 Mathematical description of light beams and optical components

Using plane waves, it is very simple to compute interferometer signals depending on the
phase and frequency of the light, and of the longitudinal degrees of freedom. Furthermore
it can be easily extended to include other degrees of freedom, such as polarisation or
transverse beam shapes.

This section introduces the plane-wave approximation as used in Finesse by default. It
also presents the basis for the Hermite-Gauss extension given in Section 4.

3.4.1 Description of light fields

A laser beam is usually described by the electric component of its electromagnetic field:

~E(t, ~x) = ~E0 cos
(
ω t− ~k~x

)
. (3.5)

In the following calculations, only the scalar expression for a fixed point in space is used.
The calculations can be simplified by using the full complex expression instead of the
cosine:

E(t) = E0 exp
(

i (ω t+ ϕ)
)

= a exp (iω t), (3.6)

where a = E0 exp (iϕ). The real field at that point in space can then be calculated as:

~E(t) = Re {E(t)} · ~epol, (3.7)

with ~epol as the unit vector in the direction of polarisation.

Each light field is then described by the complex amplitude a and the angular frequency
ω. Instead of ω, also the frequency f = ω/2π or the wavelength λ = 2πc/ω can be used
to specify the light field. It is often convenient to define one default frequency (also called
the default laser frequency) f0 as a reference and describe all other light fields by the
offset ∆f to that frequency. In the following, some functions and coefficients are defined
using f0, ω0, or λ0 referring to a previously defined default frequency. The setting of the
default frequency is arbitrary, it merely defines a reference for frequency offsets and does
not influence the results.

The electric component of electromagnetic radiation is given in Volt per meter. The light
power computes as:

P =
ε0c

2
EE∗, (3.8)

with ε0 the electric permeability of vacuum and c the speed of light. However, for more
intuitive results the light fields can be given in converted units, so that the light power
can be computed as the square of the light field amplitudes. Unless otherwise noted,
throughout this work the unit of light field amplitudes is the square root of Watt. Thus,
the power computes simply as:

P = EE∗. (3.9)

The parameter ‘epsilon c’ in the init file ‘kat.ini’ can be used to set the value of ε0 · c/2
(the default is ε0 · c/2 = 1).

34

3.4 The plane-wave approximation

3.4.2 Photodetectors and mixers

In plane-wave mode Finesse offers two methods for detecting light in an interferometer,
amplitude detectors and photodetectors. An amplitude detector (ad) detects only the
light amplitude at the given frequency even if other light fields are present. An amplitude
detector is a virtual device.

A photodetector (pd) does not only detect light at the given frequency, but also beat
signals at that frequency. For example, at DC the photodetector detects the full DC
power of all present light fields. This ‘photodetector’ refers to real photodetectors except
for the fact that it does not destroy (or change in any sense) the light field.

The photodetectors can perform a demodulation of the detected signal (light power). In
reality this would be done by a mixer. In Finesse photodetectors can be specified with
up to 5 mixer frequencies and phases: when a mixer frequency (and phase) is given, the
signal is demodulated at this frequency. When more frequencies are specified, the signal
is demodulated at these frequencies sequentially. Please note that Finesse does not
simulate a mixer: in the frequency domain the demodulation can be achieved by simply
selecting only amplitudes at the modulation frequency when computing the output of a
photodetector (see Section 3.4.3).

A real mixer always demodulates the signal with a certain demodulation phase. The
output is then a real number which represents the amplitude of the signal at the specified
frequency and phase. More information can be obtained if two mixers are used with
different demodulation phases. Using two mixers that demodulate the same signal at the
same frequency but with a difference in the demodulation phase of π/2 the amplitude
and phase of the signal at the specified frequency can be reconstructed. This is used in
network analysers to measure transfer functions.

In Finesse the demodulation automatically preserves the phase of the signal anyway. If
a demodulation phase is specified, the complex amplitude is projected onto that phase
and thus converted to a real number. On the other hand, a network analyser can be
simulated by simply leaving out the last step: if the demodulation phase for the last
specified frequency is omitted, Finesse keeps the full complex amplitude. This feature
is (as in network analysers) commonly used for computing transfer functions.

3.4.3 Modulation of light fields

In principle, all parameters of a light field can be modulated. This section describes the
modulation of the amplitude, phase and frequency of the light.

Any sinusoidal modulation of amplitude or phase generates new field components that
are shifted in frequency with respect to the initial field. Basically, light power is shifted
from one frequency component, the carrier, to several others, the sidebands. The relative
amplitudes and phases of these sidebands differ for different types of modulation and
different modulation strengths.

35

Chapter 3 Mathematical description of light beams and optical components

Phase modulation

Phase modulation can create a large number of sidebands. The amount of sidebands with
noticeable power depends on the modulation strength (or depths) given by the modulation
index m.

Assuming an input field:

Ein = E0 exp (iω0 t), (3.10)

a sinusoidal phase modulation of the field can be described as:

E = E0 exp
(

i (ω0 t+m cos (ωm t))
)
. (3.11)

This equation can be expanded using the Bessel functions Jk(m) to:

E = E0 exp (iω0 t)
∞∑

k=−∞
i k Jk(m) exp (i kωm t). (3.12)

The field for k = 0, oscillating with the frequency of the input field ω0, represents the
carrier. The sidebands can be divided into upper (k > 0) and lower (k < 0) sidebands.
These sidebands are light fields that have been shifted in frequency by k ωm. The upper
and lower sidebands with the same absolute value of k are called a pair of sidebands of
order k.

Equation 3.12 shows that the carrier is surrounded by an infinite number of sidebands.
However, the Bessel functions decrease for large k, so for small modulation indices (m <
1), the Bessel functions can be approximated by:

Jk(m) =
1

k!

(m
2

)k
+O

(
mk+2

)
. (3.13)

In which case, only a few sidebands have to be taken into account. For m � 1 we can
write:

E = E0 exp (iω0 t)

×
(
J0(m)− i J−1(m) exp (−iωm t) + i J1(m) exp (iωm t)

)
,

(3.14)

and with

J−k(m) = (−1)kJk(m), (3.15)

we obtain:

E = E0 exp (iω0 t)
(

1 + i
m

2

(
exp (−iωm t) + exp (iωm t)

))
, (3.16)

as the first-order approximation in m.

When the modulator functions as a phase modulator, then the order of sidebands can be
given. For example:

36

3.4 The plane-wave approximation

mod eom1 10M 0.6 2 pm node1 node2

applies a cosine phase modulation at 10 MHz with a modulation index of m = 0.6 and
order 2, i.e. 4 sidebands are added to the laser field.

The given number for order in the modulator command simply specifies the highest order
of Bessel function which is to be used in the sum in Equation 3.12, i.e. the program code
uses the equation:

E = E0 exp (iω0 t)

order∑
k=−order

i k Jk(m) exp (i kωm t), (3.17)

Frequency modulation

For small modulation indices phase modulation and frequency modulation can be under-
stood as different descriptions of the same effect [Heinzel]. With the frequency defined as
f = dϕ/dt a sinusoidal frequency modulation can be written as:

E = E0 exp

(
i

(
ω0 t+

∆ω

ωm
cos (ωm t)

))
, (3.18)

with ∆ω as the frequency swing (how far the frequency is shifted by the modulation) and
ωm the modulation frequency (how fast the frequency is shifted). The modulation index
is defined as:

m =
∆ω

ωm
. (3.19)

Amplitude modulation

In contrast to phase modulation, (sinusoidal) amplitude modulation always generates
exactly two sidebands. Furthermore, a natural maximum modulation index exists: the
modulation index is defined to be one (m = 1) when the amplitude is modulated between
zero and the amplitude of the unmodulated field.

If the amplitude modulation is performed by an active element, for example by modulating
the current of a laser diode, the following equation can be used to describe the output
field:

E = E0 exp (iω0 t)
(

1 +m cos (ωm t)
)

= E0 exp (iω0 t)
(

1 + m
2 exp (iωm t) + m

2 exp (−iωm t)
)
.

(3.20)

However, passive amplitude modulators (like acousto-optic modulators or electro-optic
modulators with polarisers) can only reduce the amplitude. In these cases, the following

37

Chapter 3 Mathematical description of light beams and optical components

equation is more useful:

E = E0 exp (iω0 t)
(

1− m
2

(
1− cos (ωm t)

))
= E0 exp (iω0 t)

(
1− m

2 + m
4 exp (iωm t) + m

4 exp (−iωm t)
)
.

(3.21)

Single sideband

The modulator components in Finesse can be switched to a single sideband mode where
only one sideband is added to the input light. This sideband can be either identical
to one phase modulation sideband or one amplitude modulation sideband (see above).
The modulation index is used as usual, so that a single sideband created with modulation
index m has the same amplitude as, for example, the upper sideband in an ordinary phase
modulation (order=1) with modulation index m. Therefore, the amplitude of the input
field remains larger in the single sideband case. If A0 is the amplitude of the input light
before modulation and Am is the amplitude of the carrier light after a normal modulation,
the amplitude of the carrier after a single sideband modulation is:

Assb = A0 −
A0 −Am

2
. (3.22)

Oscillator phase noise

The oscillator phase noise (or modulator phase noise) can give some information about
the performance of a modulation scheme in connection with a certain interferometer
configuration. The term phase noise describes the change of the phase of the modulation
frequency. In Equation 3.11 the phase of the modulation frequency was supposed to be
zero and is not given explicitly. In general, the modulated light has to be written with a
phase term:

E = E0 exp (i (ω0 t+m cos (ωm t+ ϕm(t))))) . (3.23)

Using Equation 3.17 phase noise can be expressed like this:

E = E0 e
iω0 t

order∑
k=−order

i k Jk(m) ei k(ωm t+ϕm(t)). (3.24)

To investigate the coupling of ϕm(t) into the output signal, we apply a cosine modulation
at the signal frequency (ωnoise):

ϕm(t) = m2 cos(ωnoise t), (3.25)

which results in the following field:

E = E0 e
iω0 t

order∑
k=−order

i k Jk(m) ei kωm t
∞∑

l=−∞
i l Jl(k m2) ei lωnoise t. (3.26)

38

3.4 The plane-wave approximation

The extra modulation of ϕm thus adds extra sidebands to the light (which will be called
‘audio sidebands’ in the following since in most cases the interesting signal frequencies are
from DC to some kHz whereas the phase modulation frequencies are very often in the MHz
regime). The audio sidebands are generated around each phase modulation sideband.
We are interested in the coupling of the audio sidebands into the interferometer output
because these sidebands will generate a false signal and therefore limit the sensitivity of
the interferometer. For a computation of a transfer function, the amplitude of the signal
sidebands (here: modulation index of audio sidebands) is assumed to be very small so
that only the terms for l = −1, 0, 1 in the second sum in Equation 3.26 have to be taken
into account and the Bessel functions can be simplified to:

E = E0 eiω0 t
∑order

k=−order i
k Jk(m) ei kωm t

×
(

1 + i k m2
2 e−iωnoise t + i k m2

2 eiωnoise t +O((km2)2)
)
.

(3.27)

Finesse automatically generates the above signal sidebands for oscillator phase noise
when the command fsig (see Section 3.1.2) is used with a modulator as component. For
example,

fsig signal1 eom1 10k 0

adds audio sidebands (ωnoise = 2π 10 kHz) to the modulation sidebands (which are gen-
erated by eom1).

Oscillator amplitude noise3

Oscillator amplitude noise has not yet been implemented in Finesse. This section de-
scribes preparatory work towards a future implementation.

In order to derive the coupling between sidebands we start with a phase modulated light
field,

E = E0 exp(i(ω0t+m cos(ωmt))) (3.28)

and replace the modulation index of the phase modulation with one that is amplitude
modulated with amplitude m2 and frequency ωm2 ,

m = m1(1 +m2 cos(ωm2t)) (3.29)

The light field now has form,

E = E0 exp(i(ω0t+m1 cos(ωm1t) +m1m2 cos(ωm1t) cos(ωm2t))) (3.30)

Using the identity,

cos(A) cos(B) =
1

2
(cos(A+B) + cos(A−B)) (3.31)

3 This section has been contributed by Joshua Smith

39

Chapter 3 Mathematical description of light beams and optical components

we can obtain,

E = E0 exp(iω0t)

· exp(im1 cos(ωm1t))

· exp(i
m1m2

2
cos((ωm1 + ωm2)t) (3.32)

· exp(i
m1m2

2
cos((ωm1 − ωm2)t)

This can be expanded into three sums of Bessel functions following Equation 3.12 and
Equation 3.13

E = E0 exp(iω0t)

·
∞∑

k=−∞
ikJk(m1) exp(ikωm1t)

·
∞∑

l=−∞
ilJl(m12) exp(il(ωm1 + ωm2)t) (3.33)

·
∞∑

n=−∞
inJn(m12) exp(in(ωm1 − ωm2)t)

= E0 exp(iω0t)

(∞∑
k=−∞

ikJk(m1) exp(ikωm1t)

)
· C

with

C =

∞∑
l=−∞

ilJl(m12) exp(il(ωm1 + ωm2)t) (3.34)

·
∞∑

n=−∞
inJn(m12) exp(in(ωm1 − ωm2)t)

where m12 = m1m2/2. As before we restrict this analysis to small modulation indices m2

and only consider sidebands with l = 0,±1 and n = 0,±1. This yields

C =
(

1 + i
m12

2
exp(−i(ωm1 + ωm2)t) + i

m12

2
exp(i(ωm1 + ωm2)t)

)
·
(

1 + i
m12

2
exp(−i(ωm1 − ωm2)t) + i

m12

2
exp(i(ωm1 − ωm2)t)

)
(3.35)

= 1 + i
m12

2
(exp(−i(ωm1 + ωm2)t) + exp(i(ωm1 + ωm2)t)

+ exp(−i(ωm1 − ωm2)t) + exp(i(ωm1 − ωm2)t)) +O(m2
2)

= 1 + i
m12

2
(exp(iωm1t) + exp(−iωm1t)) (exp(iωm2t) + exp(−iωm2t)) +O(m2

2)

40

3.4 The plane-wave approximation

3.4.4 Coupling of light field amplitudes

Many optical systems can be described mathematically using linear coupling of light
field amplitudes. Passive components, such as mirrors, beam splitters and lenses, can
be described well by linear coupling coefficients. Active components, such as electro-
optical modulators cannot be described so easily. Nevertheless, simplified versions of
active components can often be included in a linear analysis.

The coupling of light field amplitudes at a simple (flat, symmetric, etc.) mirror under
normal incidence can be described as follows: there are two input fields, In1 impinging on
the mirror on the front surface and In2 on the back surface. Two output fields leave the
mirror, Out1 and Out2. With the amplitude coefficients for reflectance and transmittance
(r, t) the following equations can be composed:

Out1 = r In1 + i t In2,

Out2 = r In2 + i t In1.
(3.36)

Possible loss is included in this description because the sum r2 + t2 may be less than one;
see Section 3.3.1 about the convention for the phase change.

The above equations completely define this simplified optical component. Optical systems
that consist of similar components can be described by a set of linear equations. Such a
set of linear equations can easily be solved mathematically, and the solution describes the
equilibrium of the optical system: given a set of input fields (as the ‘right hand side’ of the
set of linear equations), the solution provides the resulting field amplitudes everywhere
in the optical system. This method has proven to be very powerful for analysing optical
systems. It can equally well be adapted to an algebraic analysis as to a numeric approach.

In the case of the plane-wave approximation, the light fields can be described by their
complex amplitude and their angular frequency. The linear equations for each component
can be written in the form of local coupling matrices in the format:

(
Out1
Out2

)
=

(
a11 a21

a12 a22

)(
In1
In2

)
(3.37)

Out1

In1 In2

Out2

with the complex coefficients aij . These matrices serve as a compact and intuitive nota-
tion of the coupling coefficients. For solving a set of linear equations, a different notation
is more sensible: a linear set of equations can be written in the form of a matrix that rep-
resents the interferometer: the interferometer matrix times the vector of field amplitudes
(solution vector). Together with the right hand side vector that gives numeric values for
the input field, the set of linear equations is complete: interferometer

matrix

×
 ~xsol

 =

 ~xRHS

 . (3.38)

41

Chapter 3 Mathematical description of light beams and optical components

For the above example of a simple mirror the linear set of equations in matrix form looks
as follows:

1 0 0 0
−a11 1 −a21 0

0 0 1 0
−a12 0 −a22 1

×

In1
Out1
In2

Out2

 =

In1
0

In2
0

 . (3.39)

Space

The component ‘space’ is propagating a light field through free space over a given length L
(index of refraction n). The length times index of refraction is by definition (in Finesse)
always a multiple of the default laser wavelength λ0. This defines a macroscopic length
(see Section 3.3.2). If the actual length between two other components is not a multiple
of the default wavelength, the necessary extra propagation is treated as a feature of one
or both end components. For example, a space between two mirrors is always resonant
for laser light at the default wavelength. To tune the cavity away from it, one or both
mirrors have to be tuned (see Section 3.3.2) accordingly while the length of the component
‘space’ is not changed.

(
Out1
Out2

)
=

(
0 s1

s2 0

)(
In1
In2

)
Space

In2In1

Out2Out1

The propagation only affects the phase of the field:

s1 = s2 = exp (−iωnL/c) = exp (−i (ω0 + ∆ω)nL/c) = exp (−i ∆ωnL/c), (3.40)

where exp (−iω0nL/c) = 1 following from the definition of macroscopic lengths (see
above). The used parameters are the length L, the index of refraction n, the angular
frequency of the light field ω, and the offset to the default frequency ∆ω.

Mirror

From the definition of the component ‘space’ that always represents a macroscopic length,
follows the necessity to perform microscopic propagations inside the mathematical repre-
sentation of the components mirror and beam splitter. In this description the component
mirror is always hit at normal incidence. Arbitrary angles of incidence are discussed for
the component beam splitter, see below.

A light field Ein reflected by a mirror is in general changed in phase and amplitude:

Erefl = r exp (iϕ) Ein, (3.41)

42

3.4 The plane-wave approximation

where r is the amplitude reflectance of the mirror and ϕ = 2kx the phase shift acquired
by the propagation towards and back from the mirror if the mirror is not located at the
reference plane (x = 0).

The tuning φ gives the displacement of the mirror expressed in radian (with respect to
the reference plane). A tuning of φ = 2π represents a displacement of the mirror by one
carrier wavelength: x = λ0. The direction of the displacement is arbitrarily defined to be
in the direction of the normal vector on the front surface, i.e. a positive tuning moves the
mirror from node2 towards node1 (for a mirror given by ‘m ...node1 node2’).

If the displacement xm of the mirror is given in meters, then the corresponding tuning φ
computes as follows:

φ = kxm = xm
2π

λ0
= xm

ω0

c
. (3.42)

A certain displacement results in different phase shifts for light fields with different fre-
quencies. The phase shift a general field acquires at the reflection on the front surface of
the mirror can be written as:

ϕ = 2φ
ω

ω0
. (3.43)

If a second light beam hits the mirror from the other direction the phase change ϕ2 with
respect to the same tuning would be:

ϕ2 = −ϕ. (3.44)

The tuning of a mirror or beam splitter does not represent a change in the path length
but a change in the position of component. The transmitted light is thus not affected by
the tuning of the mirror (the optical path for the transmitted light always has the same
length for all tunings). Only the phase shift of π/2 for every transmission (as defined in
Section 3.3.1) has to be taken into account:

Etrans = i t Ein, (3.45)

with t as the amplitude transmittance of the mirror.

The coupling matrix for a mirror is:

(
Out1
Out2

)
=

(
m11 m21

m12 m22

)(
In1
In2

)
(3.46)

Out1

In1 In2

Out2

with the coefficients given as:

m12 = m21 = i t,

m11 = r exp (i 2φ ω/ω0),

m22 = r exp (−i 2φ ω/ω0),

with φ = 2π phi/360, phi as the tuning of the mirror given in the input file, and ω the
angular frequency of the reflected light.

43

Chapter 3 Mathematical description of light beams and optical components

Beam splitter

A beam splitter is similar to a mirror except for the extra parameter α which indicates
the angle of incidence of the incoming beams and that it can be connected to four nodes.
The order in which these nodes have to be entered is shown in Figure 3.4.4.

n2

bs

α

n4

n3

beam splitter

n1

Figure 3.3: Beam splitter.

Since, in this work, a displacement of the beam splitter is assumed to be perpendicular
to its optical surface, the angle of incidence affects the phase change of the reflected light.
Simple geometric calculations lead to the following equation for the optical phase change
ϕ:

ϕ = 2φ
ω

ω0
cos(α). (3.47)

The coupling matrix has the following form:

Out1
Out2
Out3
Out4

 =

0 bs21 bs31 0
bs12 0 0 bs42

bs13 0 0 bs43

0 bs24 bs34 0

In1
In2
In3
In4

 (3.48)

Out4In4

In1

Out1

In2 Out2

In3

Out3

with the coefficients:

bs12 = bs21 = r exp (i 2φω/ω0 cosα),

bs13 = bs31 = i t,

bs24 = bs42 = i t,

bs34 = bs43 = r exp (−i 2φω/ω0 cosα),

and φ = 2π phi/360.

44

3.4 The plane-wave approximation

Modulator

The modulation of light fields is described in Section 3.4.3. A small modulation of a light
field in amplitude or phase can be described as follows: a certain amount of light power is
shifted from the carrier into new frequency components (sidebands). In general, a modu-
lator can create a very large number of sidebands if, for example, the modulator is located
inside a cavity: on every round trip the modulator would create new sidebands around
the previously generated sidebands. This effect cannot be modelled by the formalism
described here.

Instead, a simplified modulator scheme is used. The modulator only acts on specially
selected light fields and generates a well-defined number of sidebands. With these sim-
plifications the modulator can be described as:

- an attenuator for the light field that experiences the modulation (at the carrier
frequency);

- a source of light at a new frequency (the sideband frequencies), see Section 3.4.5.

All other frequency components of the light field are attenuated by the modulator in
accordance with the J0 Bessel coefficient. The coupling matrix for the modulator is:

(
Out1
Out2

)
=

(
0 eo21

eo12 0

)(
In1
In2

) In2

Out2Out1

In1

The modulation and signal sidebands are not affected by the modulator. The coupling
coefficients for field amplitudes at these frequencies are simply:

eo12 = eo21 = 1. (3.49)

When the input field is a laser field, the modulator shifts power from the main beam to
generate the modulation sidebands. Therefore a modulator reduces the amplitude of the
initial field. The phase is not changed:

eo12 = eo21 = C, (3.50)

with

C = 1− m

2
, (3.51)

(m is the modulation index midx) for amplitude modulation and

C = J0(m), (3.52)

for phase modulation. If the ‘single sideband’ mode is used, then C is replaced by C ′:

C ′ = 1− 1− C
2

. (3.53)

45

Chapter 3 Mathematical description of light beams and optical components

Isolator (diode)

The isolator represents a simplified Faraday isolator: light passing in one direction is not
changed, whereas the power of the beam passing in the other direction is reduced by a
specified amount:

(
Out1
Out2

)
=

(
0 d21

d12 0

)(
In1
In2

)
(3.54)

In2

Out2Out1

In1

The amplitude coupling coefficients are:

d12 = 1,

d21 = 10−S/20,

with S the specified suppression given in dB.

Lens

The thin lens does not change the amplitude or phase of the light fields.

(
Out1
Out2

)
=

(
0 1
1 0

)(
In1
In2

) In2

Out2Out1

In1

Gratings

Gratings are optical components which require a more complex treatment than the com-
ponents above. The context of Finesse allows simulation of certain aspects of a grating
in a well defined configuration. This section gives a short introduction to the implementa-
tion of gratings in Finesse. This work has been done with help by Alexander Bunkowski
and the notation is based on his paper [Bunkowski01].

The name grating is used for various very different types of optical components. The
following description is restricted to phase gratings used in reflection. However, the
implemented formalism can also be used to simulate some properties of optical setups
with other grating types.

This phase grating in reflection has been chosen because it can possibly be manufactured
with similar optical and mechanical qualities as the high quality mirrors used in gravi-
tational wave detectors today. Thus low-loss laser interferometers with an all-reflective
topology can be envisaged.

46

3.4 The plane-wave approximation

m=0
in

m=1

phi0

+ −

Figure 3.4: A grating illuminated by a beam (in). The number of outgoing beams is
given by the grating equation Equation 3.55. The beams are numbered by an integer
(m) and the angles with respect to the grating normal are given as φm (angles left of
the grating normal are positive, right of the normal negative). The geometry is chosen
such that the angle of incidence is always positive. m = 0 marks the zeroth order
reflection which corresponds to a normal reflection. Thus φ0 = −α. The beams with
negative orders (m = −1,−2,. . .) are with angles −π/2 < φ < −α whereas positive
orders have angles of π/2 > φ > −α. In the example shown here only two orders exist.

The gratings in Finesse are characterised by the number of ports. In general a grating
is defined by its grating period, given in [nm]. With the wavelength and the angle of
incidence α all possible outgoing beams can be computed with the grating equation:

sin (φm) + sin(α) =
mλ

d
, (3.55)

with m an integer to label the order of the outgoing beam. An example is shown in
Figure 3.4. The geometry is chosen so that always α ≥ 0. This is possible since the setup
is (so far) symmetric. All orders with angles φm between 90◦ and −90◦ exist and will
contain some amount of light power. The zeroth order represents the reflection as on a
mirror surface with φ0 = −α. Orders with negative number leave the grating with an
angle −90 < φ < −α, positive orders have angles with 90 > φ > −α.

In order to construct a device with a small number of ports the grating period has to be
chosen such that d ≈ λ. Equation 3.55 can be used to compute limits for the grating
parameters with respect to the configuration used. We can write Equation 3.55 as:

mλ

d
= sin (φm) + sin(α) = [−1, 2]. (3.56)

In all following cases more than just the zeroth order (m = 0) should exist, n shall be a
positive integer. For the positive order m = n to be allowed we get:

λ

d
≤ 2

n
. (3.57)

And the negative order m = −n can exist only if:

λ

d
≤ 1

n
. (3.58)

47

Chapter 3 Mathematical description of light beams and optical components

Table 3.1 gives on overview of the modes that the grating equation allows to exist in
certain intervals. Note that we have not yet specified α. Whether an order exists or not
can be completely determined only for a given angle of incidence.

m 0 1 2 3 4 -1 -2 -3 number
λ/d of orders

]2, inf] x 1
]1, 2] x x 2
]2
3 , 1] x x x x 4

]1
2 ,

2
3] x x x x x 5

]1
3 ,

1
2] x x x x x x x 7

]2
5 ,

1
3] x x x x x x x x 8

Table 3.1: Possible existing orders with (for a well-chosen angle of incidence α) in de-
pendence of λ/d.

Littrow configuration one special setup is the Littrow configuration in which the angle
of incidence coincides with one mode angle. The nth order Littrow configuration is given
by:

φn = α, (3.59)

which yields:

sin(α) =
nλ

2d
. (3.60)

Grating components in Finesse Finesse offers the following three grating types:

gr2 : a 2 port grating in first order Littrow configuration
gr3 : a 3 port grating in second order Littrow configuration
gr4 : a 4 port device, only the first order exists and is used not in Littrow configuration

Each configuration corresponds to a set of limits, for example, the angle of incidence.

In the following, these limits and the coupling matrices for these grating configurations
are given. The matrix is given in the form:

bi = Aijaj , (3.61)

with aj being the vector of incoming fields and bi the vector of outgoing fields.

gr2 component a grating in first order Littrow configuration is defined by the fact that
only the orders m = 0, 1 exist and that φ1 = α. The grating equation therefore reduces
to

sin(φm) = (m− 1/2)λ/d. (3.62)

48

3.4 The plane-wave approximation

The existence of m = 1 gives λ/d < 2, the non-existence of m = −1 or m = 2 yields
λ/d > 2/3. Written together, we get:

λ/2 < d < 3/2 λ. (3.63)

The angle of incidence α and the grating period are related as:

α = arcsin

(
λ

2d

)
. (3.64)

The angle of incidence is set automatically by Finesse (the positive value is chosen by
default).

The two coupling efficiencies η0, η1 are constrained by energy conservation4 (as for the
beam splitter) as:

η2
0 + η2

1 = 1. (3.65)

The coupling matrix is given by:

(
b1

b2

)
=

(
i η1 η0

η0 i η1

)(
a1

a2

) b1

a1 a2

b2

gr3 component The second order Littrow configuration. Only the orders m = 0, 1, 2
exist. This gives:

λ < d < 2λ. (3.66)

And φ2 must be equal to α. This yields:

α = arcsin

(
λ

d

)
. (3.67)

The coupling matrix for this grating configuration is rather complex [Bunkowski01]. It
can be written as:

 b1

b2

b3

 =

 η2e
iφ2 η1e

iφ1 η0e
iφ0

η1e
iφ1 ρ0e

iφ0 η1e
iφ1

η0e
iφ0 η1e

iφ1 η2e
iφ2

 a1

a2

a3

 b1

a1
a2 b2 a3

b3

4 The gratings are defined as lossless components in Finesse. This corresponds to the employed phase
relations between different orders. Currently, losses can be added only be inserting extra mirrors with
R = 0, T 6= 1.

49

Chapter 3 Mathematical description of light beams and optical components

with:

φ0 = 0,

φ1 = −1
2 arccos

(
η21−2η20
2ρ0η0

)
,

φ2 = arccos
(
−η21

2η2η0

)
.

(3.68)

The coupling efficiencies are limited by energy conservation to:

ρ2
0 + 2η2

1 = 1,
η2

0 + η2
1 + η2

2 = 1.
(3.69)

Further limits for the coupling efficiencies follow from the coupling phases:

1− ρ0

2
≤ η0, η2 ≤

1 + ρ0

2
. (3.70)

gr4 component The grating is not used in any Littrow configuration. Only two orders
are allowed to exist. From the grating equation one can see that these can only be
m = 0, 1. To compute the limits for λ/d and α we rewrite the grating equation as:

a+ b = mc, (3.71)

with a = sin(α) ∈ [0, 1], b = sin(φ) ∈ [−1, 1] and c = λ/d > 0. From the fact that the
first order m = 1 should exist we get:

a+ b = c. (3.72)

This can only be true if

c < 2, (3.73)

and

a > c− 1. (3.74)

We can derive the next limit from the fact that m = −1 must not exist, i.e.:

a+ b 6= −c, (3.75)

this is true if

a+ c < −1 ∨ a+ c > 1. (3.76)

The first condition is never fulfilled so we get the remaining limit as:

a > 1− c. (3.77)

50

3.4 The plane-wave approximation

Now, we must make sure that m = 2 does not exist:

a+ b 6= 2c. (3.78)

As before we can write this as

a < 2c− 1 ∨ a > 2c+ 1. (3.79)

The second condition can never be fulfilled. Also the first limit immediately gives c >
1
2 but together with Equation 3.77 we can restrict possibles values for c even further.
Combining Equation 3.77 and Equation 3.79 we get:

a > 1− c ∧ a < 2c− 1. (3.80)

This is only possible if

1− c < 2c− 1, (3.81)

and thus c > 2/3.

In summary we get:

λ/2 < d < 3/2 λ,
1− λ/d < sin(α) < 2λ/d− 1 for λ/d < 1,
λ/d− 1 < sin(α) for λ/d > 1.

(3.82)

The coupling of the field amplitude then corresponds to that of a beam splitter. The two
coupling efficiencies η0, η1 are constrained by energy conservation as:

η2
0 + η2

1 = 1. (3.83)

The coupling matrix is given by:

b1
b2
b3
b4

 =

0 A21 A31 0
A12 0 0 A42

A13 0 0 A43

0 A24 A34 0

a1
a2
a3
a4

 a1

b1

a2

b2

b4
a4

a3
b3

with the coefficients:

A12 = A21 = η0, (3.84)

A13 = A31 = i η1, (3.85)

A24 = A42 = i η1, (3.86)

A34 = A43 = η0. (3.87)

51

Chapter 3 Mathematical description of light beams and optical components

3.4.5 Input fields or the ‘right hand side’ vector

After the set of linear equations for an optical system has been determined, the input
light fields have to be given by the user. The respective fields are entered into the ‘right
hand side’ (RHS) vector of the set of linear equations. The RHS vector consists of
complex numbers that specify the amplitude and phase of every input field. Input fields
are initially set to zero, and every non-zero entry describes a light source. The possible
sources are lasers, modulators and ‘signal sidebands’.

Laser

The principal light sources are, of course, the lasers. They are connected to one node
only. The input power is specified by the user in the input file. For every laser the field
amplitude is set as:

ain =
√

(P/εc) e
iϕ, (3.88)

with

P = ε0c|a|2, (3.89)

as the laser power and ϕ the specified phase. The conversion factor εc = ε0 · c can be
set in the init file ‘kat.ini’. The default value is εc = 1. This setting does not yield
correct absolute values for light field amplitudes, i.e. when amplitude detectors are used.
Instead, one obtains more intuitive numbers from which the respective light power can
be easily computed. For the correct units of field amplitudes, the value for εc can be set
to εc = ε0 · c ≈ 0.0026544.

Modulators

Modulators produce non-zero entries in the RHS vector for every modulation sideband
generated. Depending on the order (k ≥ 0) and the modulation index (m), the input
field amplitude for amplitude modulation is:

ain =
m

4
, (3.90)

and for phase modulation:

ain = (−1)k Jk(m) exp (iϕ), (3.91)

with ϕ given as (Equation 3.12):

ϕ = ±k · (π
2

+ ϕs), (3.92)

where ϕs is the user-specified phase from the modulator description. The sign of ϕ is the
same as the sign of the frequency offset of the sideband. For ‘lower’ sidebands (fmod < 0)
we get ϕ = − . . . , for ‘upper’ sidebands (fmod > 0) it is ϕ = +

52

3.4 The plane-wave approximation

Signal frequencies

The most complex input light fields are the signal sidebands. They can be generated by
many different types of modulation inside the interferometer (signal modulation in the
following). The components mirror, beam splitter, space, laser and modulator can be
used as a source of signal sidebands. Primarily, signal sidebands are used as the input
signal for computing transfer functions of the optical system. The amplitude, in fact the
modulation index, of the signal is assumed to be much smaller than unity so that the
effects of the modulation can be described by a linear analysis. If linearity is assumed,
however, the computed transfer functions are independent of the signal amplitude; thus,
only the relative amplitudes of output and input are important, and the modulation index
of the signal modulation can be arbitrarily set to unity in the simulation.

Signal frequencies can be ‘applied’ to a number of different components using the com-
mand fsig. The connection of the signal frequency causes the component to—in some
way—modulate the light fields at the component. The frequency, amplitude and phase
of the modulation can be specified by fsig.

Finesse always assumes a numerical signal amplitude of 1. The numerical value of 1
has a different meaning for applying signals to different components (see below). The
amplitude specified with fsig can be used to define the relative amplitudes of the source
when the signal is applied to several components at once. Please note that Finesse does
not correct the transfer functions for strange amplitude settings. An amplitude setting
of two, for example, will scale the output (a transfer function) by a factor of two.

In order to have a determined number of light fields, the signal modulation of a signal
sideband has to be neglected. This approximation is sensible because in the steady
state the signal modulations are expected to be tiny so that second-order effects (signal
modulation of the signal modulation fields) can be omitted.

In general, the carrier field at the ‘signal component’ can be written as:

Ein = E0 exp (iωc t+ ϕc), (3.93)

with ωc the carrier frequency, and ϕc the phase of the carrier. In most cases the modula-
tion of the light will be a phase modulation. Then the field after the modulation can be
expressed in general as:

Eout = A E0 exp (iωc t+ ϕc + ϕ(t) +B), (3.94)

with A as a real amplitude factor, B a constant phase term and

ϕ(t) = m cos (ωs t+ ϕs), (3.95)

with m the modulation index, ωs the signal frequency and ϕs the phase as defined by
fsig. The modulation index will in general depend on the signal amplitude as as given
by fsig and also other parameters (see below). As mentioned in Section 3.1.2, the simple

53

Chapter 3 Mathematical description of light beams and optical components

form for very small modulation indices (m� 1) can be used: only the two sidebands of
the first order are taken into account and the Bessel functions can be approximated by:

J0(m) ≈ 1,
J±1(m) ≈ ±m

2 .
(3.96)

Thus, the modulation results in two sidebands (‘upper’ and ‘lower’ with a frequency offset
of ±ωs to the carrier) which can be written as:

Esb = i m2 A E0 exp (i ((ωc ± ωs) t+ ϕc +B ± ϕs))
= m

2 A E0 exp (i (ωsb t+ π/2 + ϕc +B ± ϕs)).
(3.97)

mirrorreference plane

modulation

xt

E in

xm

Figure 3.5: Signal applied to a mirror: modulation of the mirror position.

Mirror Mirror motion does not change transmitted light. The reflected light will be
modulated in phase by any mirror movement. The relevant parameters are shown in
Figure 3.5. At a reference plane (at the nominal mirror position when the tuning is zero),
the field impinging on the mirror is:

Ein = E0 exp
(

i (ωct+ ϕc − kcx)
)

= E0 exp (iωct+ ϕc). (3.98)

If the mirror is detuned by xt (here given in meters) then the electric field at the mirror
is:

Emir = Ein exp (−i kcxt). (3.99)

With the given parameters for the signal frequency, the position modulation can be
written as xm = as cos(ωst+ ϕs) and thus the reflected field at the mirror is:

Erefl = r Emir exp (i 2kcxm) = r Emir exp
(

i 2kcas cos(ωst+ ϕs)
)
, (3.100)

setting m = 2kcas, this can be expressed as:

Erefl = r Emir

(
1 + i m2 exp

(
−i (ωst+ ϕs)

)
+ i m2 exp

(
i (ωst+ ϕs)

))
= r Emir

(
1 + m

2 exp
(
−i (ωst+ ϕs − π/2)

)
+m

2 exp
(

i (ωst+ ϕs + π/2)
))
.

(3.101)

54

3.4 The plane-wave approximation

This gives an amplitude for both sidebands of:

asb = r m/2 E0 = r kcas E0. (3.102)

The phase back at the reference plane is:

ϕsb = ϕc +
π

2
± ϕs − (kc + ksb) xt, (3.103)

where the plus sign refers to the ‘upper’ sideband and the minus sign to the ‘lower’
sideband. As in Finesse the tuning is given in degrees, i.e. the conversion from xt to φ
has to be taken into account:

ϕsb = ϕc + π
2 ± ϕs − (ωc + ωsb)/c xt

= ϕc + π
2 ± ϕs − (ωc + ωsb)/c λ0/360 φ

= ϕc + π
2 ± ϕs − (ωc + ωsb)/ω0 2π/360 φ.

(3.104)

With a nominal signal amplitude of as = 1, the sideband amplitudes become very large.
For an input light field at the default wavelength one typically obtains:

asb = r kc E0 = r ωc/c E0 = r 2π/λ0 E0 ≈ 6 · 106. (3.105)

Numerical algorithms have the best accuracy when the various input numbers are of the
same order of magnitude, usually set to a number close to one. Therefore, the signal
amplitudes for mirrors (and beam splitters) should be scaled: a natural scale is to define
the modulation in radians instead of meters. The scaling factor is then ω0/c, and setting
a = ω0/c a

′ the reflected field at the mirror becomes:

Erefl = r Emir exp (i 2ωc/ω0 xm)

= r Emir exp
(

i 2ωc/ω0 a
′
s cos(ωst+ ϕs)

)
,

(3.106)

and thus the sideband amplitudes are:

asb = r ωc/ω0 a
′
s E0, (3.107)

with the factor ωc/ω0 typically being close to one. The units of the computed transfer
functions are ‘output unit per radian’; which are neither common nor intuitive. The
command scale meter converts the units into the more common ‘Watts per meter’ by
applying the inverse scaling factor c/ω0.

When a light field is reflected at the back surface of the mirror, the sideband amplitudes
are computed accordingly. The same formulae as above can be applied with xm → −xm

and xt → −xt, yielding the same amplitude as for the reflection at the front surface, but
with a slightly different phase:

ϕsb,back = ϕc + π
2 ± (ϕs + π) + (kc + ksb) xt

= ϕc + π
2 ± (ϕs + π) + (ωc + ωsb)/ω0 2π/360 φ.

(3.108)

55

Chapter 3 Mathematical description of light beams and optical components

Beam splitter When the signal frequency is applied to the beam splitter, the reflected
light is modulated in phase. In fact, the same computations as for mirrors can be used
for beam splitters. However, all distances have to be scaled by cos(α) (see Section 3.4.4).
Again, only the reflected fields are changed by the modulation and the front side and
back side modulation have different phases. The amplitude and phases compute to:

asb = r ωc/ω0 as cos(α) E0, (3.109)

φsb,front = ϕc +
π

2
± ϕs − (kc + ksb)xt cos(α), (3.110)

φsb,back = ϕc +
π

2
± (ϕs + π) + (kc + ksb)xt cos(α). (3.111)

Space For interferometric gravitational wave detectors, the ‘free space’ is an important
source for a signal frequency: a passing gravitational wave modulates the length of the
space (i.e. the distance between two test masses). A light field passing this length will
thus be modulated in phase. The phase change φ(t) which is accumulated over the full
length is (see, for example, [Mizuno]):

φ(t) =
ωc n L

c
+
as
2

ωc
ωs

sin

(
ωs
n L

c

)
cos

(
ωs

(
t− n L

c

))
, (3.112)

with L the length of the space, n the index of refraction and as the signal amplitude given
in strain (h). This results in a signal sideband amplitude of:

asb =
1

4

ωc
ωs

sin

(
ωs
n L

c

)
as E0, (3.113)

φsb = ϕc +
π

2
± ϕs − (ωc + ωs)

nL

c
. (3.114)

Laser Applying a signal to a laser is treated as a frequency modulation of the laser:

E = E0 e
i (ωc t+as/ωs cos(ωs t+ϕs)+ϕc). (3.115)

Therefore the amplitude of the sidebands is scaled with frequency as:

asb = as
2ωs

E0,

φsb = ϕc + π
2 ± ϕs.

(3.116)

Modulator Signal frequencies at a modulator are treated as ‘phase noise’. See Sec-
tion 3.4.3 for details. The electric field that leaves the modulator can be written as:

E = E0 ei (ω0 t+ϕ0)
∑order

k=−order i
k Jk(m) ei k(ωm t+ϕm)

×
(

1 + i k m2 as
2 e−i(ωs t+ϕs) + i k m2 as

2 ei (ωs t+ϕs) +O((km2)2)
)
,

(3.117)

56

3.4 The plane-wave approximation

with

Emod = E0 Jk(m),
ϕmod = ϕ0 + k π2 + kϕm.

(3.118)

The sideband amplitudes are:

asb = askm2
2 Emod,

φsb = ϕmod + π
2 ± ϕs.

(3.119)

3.4.6 Photodetectors and demodulation

With all the different ways of plotting output signals in Finesse it is important to un-
derstand that every photodiode output represents only one of many possible component
of a signal. The ‘output signal’ can be a light field, a light power, or a mixer output.
Of course, you can calculate more than one component at a time, but only by specifying
different detectors for each of them.

When the program has calculated the light field amplitudes for every frequency and
every output port, the interferometer is completely ‘solved’. With the field amplitudes
and phases you can now calculate every error signal or frequency response. The different
possible detectors you can use with Finesse are meant to simplify this task for the
most common purposes. Each photodetector type calculates a special output from the
available field amplitudes. The following paragraphs show how this is done. For simplicity
the calculations will be given for one output port only.

Common to several detector types are some scaling factors which can be applied: the
command scale can be used to scale the output by a given factor. Several preset factors
can be used:

• scale ampere output in the input file scales light power to photocurrent for the
specified detector. The scaling factor (from Watts to Amperes) is:

Campere =
e qeff λ0

hc
[
A

W
], (3.120)

with e the electron charge, qeff the quantum efficiency of the detector, h Planck’s
constant, and c the speed of light. λ0 is the default laser wavelength; if several light
fields with different wavelengths are present or sidebands are concerned, still only
one wavelength is used in this calculation. The differences in λ should be very small
in most cases so that the resulting error is negligible.
• scale meter output can be useful when a transfer function has been computed and

fsig was applied to a mirror or beam splitter. The output is scaled by 2π/λ0 (or
λ0/2π for pdS). Because the microscopic movement of these components is always
set via the tuning, a computed transfer function with the signal inserted at a mirror
or beam splitter will have the units Watt/radian. With scale meter the result will
be rescaled to Watt/meter. In case of a sensitivity (pdS), the output will be scaled
to m/

√
Hz.

57

Chapter 3 Mathematical description of light beams and optical components

• scale deg output will scale the output by 180/π. This may be useful in some cases.
For example, if the DC value of a transfer function is to be compared to the slope of
an error signal (at the operating point). The latter is usually given in Watt/degree
whereas the transfer function is typically Watt/radian.

In general, several light fields with different amplitudes, phases and frequencies will be
present on a detector. The resulting light field in an interferometer output (i.e. on a
detector) can be written as

E = eiω0 t
N∑
n=0

an e
iωn t, (3.121)

where the an are complex amplitudes.

The frequency ω0 is the default laser frequency, and ωn are offset frequencies to ω0

(either positive, negative or zero). Note that very often a slightly different representation
is chosen

E = eiω0 t
(
b0 + b1 e

iω1t + b−1 e
−iω1t + · · ·+ bM eiωM t + b−M e−iωM t

)
, (3.122)

where ω0 is the carrier frequency and ω1, ω2, . . . , ωM > 0 are the (symmetric) sidebands.
However, in a general approach there might be more than one carrier field and the side-
bands are not necessarily symmetric, so Equation 3.121 is used here.

Amplitude detector

The amplitude detector simply plots the already calculated amplitudes of the light field
at the specified frequency. The amplitude at frequency ωm is a complex number (z), and
is calculated as follows:

z =
∑
n

an with {n | n ∈ {0, . . . , N} ∧ ωn = ωm}. (3.123)

Note that the amplitude detector distinguishes between positive and negative frequencies.

Photodetectors

For real detectors we have to look at the intensity at the output port:

|E|2 = E · E∗ =
N∑
i=0

N∑
j=0

aia
∗
j e

i (ωi−ωj) t

= A0 +A1e
i ω̄1 t +A2e

i ω̄2 t + . . . ,

(3.124)

with the Ai being the amplitudes of the light power sorted by the beat frequencies ω̄i. In
fact, Finesse never calculates the light power as above, instead it only calculates parts
of it depending on the photodetector you specify. There are basically two ways of using
photodetectors in Finesse: a simple photodetector for DC power and a detector with up
to 5 demodulations. These detectors see different parts of the sum in Equation 3.124.

58

3.4 The plane-wave approximation

The DC detector looks for all components without frequency dependence. The fre-
quency dependence vanishes when the frequency becomes zero, i.e. in all addends of
Equation 3.124 with ωi = ωj . The output is a real number, calculated like this:

x =
∑
i

∑
j

aia
∗
j with {i, j | i, j ∈ {0, . . . , N} ∧ ωi = ωj}. (3.125)

A single demodulation can be described by a multiplication of the output with a cosine:
cos(ωx + ϕx) (ωx is the demodulation frequency and ϕx the demodulation phase) which
is also called the ‘local oscillator’. In Finesse, the term ‘demodulation’ also implies a
low pass filtering of the signal after multiplying it with a local oscillator. After whatever
demodulation was performed only the DC part of the result is taken into account. The
signal is

S0 = |E|2 = E · E∗ =

N∑
i=0

N∑
j=0

aia
∗
j e

i (ωi−ωj) t, (3.126)

multiplied with the local oscillator it becomes

S1 = S0 · cos(ωxt+ ϕx) = S0
1
2

(
ei (ωxt+ϕx) + e−i (ωxt+ϕx)

)
= 1

2

N∑
i=0

N∑
j=0

aia
∗
j e

i (ωi−ωj) t ·
(
ei (ωxt+ϕx) + e−i (ωxt+ϕx)

)
.

(3.127)

With Aij = aia
∗
j and eiωij t = ei (ωi−ωj) t we can write

S1 =
1

2

 N∑
i=0

Aii +
N∑
i=0

N∑
j=i+1

(Aij e
iωij t +A∗ij e

−iωij t)

 ·(ei (ωxt+ϕx) + e−i (ωxt+ϕx)
)
.

(3.128)

When looking for the DC components of S1 we get the following

S1,DC =
∑
ij

1
2(Aij e

−iϕx +A∗ij e
iϕx) with {i, j | i, j ∈ {0, . . . , N} ∧ ωij = ωx}

=
∑
ij

Re
{
Aij e

−iϕx
}
.

(3.129)

This would be the output of a mixer. The results for ϕx = 0 and ϕx = π/2 are called
in-phase and in-quadrature respectively (or also first and second quadrature). They are
given by:

S1,DC,phase =
∑
ij

Re {Aij} ,

S1,DC,quad =
∑
ij

Im {Aij} .
(3.130)

59

Chapter 3 Mathematical description of light beams and optical components

When the user has specified a demodulation phase the output given by Finesse is real

x = S1,DC. (3.131)

If no phase is given the output is a complex number

z =
∑
ij

Aij with {i, j | i, j ∈ {0, . . . , N} ∧ ωij = ωx}. (3.132)

A double demodulation is a multiplication with two local oscillators and taking the DC
component of the result. First looking at the whole signal we can write:

S2 = S0 · cos(ωx + ϕx) cos(ωy + ϕy). (3.133)

This can be written as

S2 = S0
1
2(cos(ωy + ωx + ϕy + ϕx) + cos(ωy − ωx + ϕy − ϕx))

= S0
1
2(cos(ω+ + ϕ+) + cos(ω− + ϕ−)),

(3.134)

and thus reduced to two single demodulations. Since we now only care for the DC com-
ponent we can use the expression from above (Equation 3.129). These two demodulations
give two complex numbers:

z1 =
∑
ij
Aij with {i, j | i, j ∈ {0, . . . , N} ∧ ωi − ωj = ω+},

z2 =
∑
ij
Akl with {k, l | k, l ∈ {0, . . . , N} ∧ ωk − ωl = ω−}.

(3.135)

The demodulation phases are applied as follows to get a real output (two sequential
mixers):

x = Re
{

(z1 e
−iϕx + z2 e

iϕx) e−iϕy
}
. (3.136)

A demodulation phase for the first frequency (here ϕx) must be given in any case. To get
a complex output the second phase can be omitted:

z = z1 e
−iϕx + z2 e

iϕx . (3.137)

More demodulations can also be reduced to single demodulations as above. In fact the
same code computes output signals for up to 5 demodulations.

3.5 The lock command

The lock command as described in the Syntax reference can be used to implement a
feedback system using an internal iterative process. For each data point as specified by
the xaxis commands the lock command solves the interferometer matrix several times in

60

3.5 The lock command

200 150 100 50 0 50 100 150 200
phi [deg] (m2)

-60 m

-40 m

-20 m

0

20 m

40 m

60 m

A
b
s

 n1 :

0 10 20 30 40 50
phi [deg] (m2)

-10

0

10

20

30

40

50

A
b
s

cav_pow n2 :

clock :

Figure 3.6: Using a Pound-Drever signal for the lock command: the top plot shows the
error signal, the lower plot shows the correction signal when the lock is active and the
cavity circulating power as a test signal. The correction signal ‘clock’ increases propor-
tional to the detuning as expected and the cavity power is maintained throughout.

order to perform the iteration. Used correctly the lock command can be an effective tool.
However, it should be noted that even a simple lock often increases the computation time
by factors of five.

One of the main uses of the lock command is to keep a cavity on resonance in the presence
of beam shape distortions, either through mirror misalignments, mode mismatch, or more
complex surface distortions introduced via mirror maps, see Section 4.7. In all these cases
higher-order modes play a significant role in the description of the optical fields, and as
a result the simple trick of making all spaces to be multiples of the wavelength does not

61

Chapter 3 Mathematical description of light beams and optical components

guarantee resonance condition for mirror tunings of φ = 0. Instead the correct mirror
tunings need to be set explicitly, for example, by first scanning the cavity and finding the
resonance condition. Alternatively a lock command can be used to iteratively adjust the
tuning of a cavity for each data point.

3.5.1 Using a real error signal for a lock

One of the best ways to ensure that a lock is performing as expected is to use a real
error signal, for example to lock a cavity with a Pound-Drever Hall (PDH) error signal,
as shown in Figure 3.6. In the presence of higher-order modes, the cavity resonance does
not necessarily coincide with the maximum circulating power. If a PDH signal is used
in the experiment, you should use the same error signal in Finesse to ensure that the
cavity in the model is always tuned to the same operating point as the experiment. See
Appendix A for another short tutorial on how to setup and lock a simple cavity.

This example is on purpose using a mode-mismatched and misaligned cavity to show the
impact of these distortions on the error signal. The top plot in Figure 3.6 clearly shows
the zero crossings of the carrier and sideband fields. In order to guarantee a successful
lock the simulation should be started on resonance, for example we can tune m1 so that
the cavity is on resonance and if we chose to tune m2, as shown in the bottom plot, this
should start at a tuning of zero. The Finesse file for using a Pound-Drever Hall signal
with the lock command is:

l i1 1 0 n0

gauss g1 i1 n0 22m -1.2

startnode n0

mod eo1 40k 0.3 3 pm n0 n1 # phase modulator f_mod=40kHz

midx=0.3 order=3

m m1 0.95 0.01 $m1tune n1 n2 # cavity

s s2 1200 n2 n3

m m2 0.99 0.01 0 n3 n4

cav cav1 m1 n2 m2 n3

attr m2 Rc 3000 # distortions, unmatched

attr m1 xbeta 1u # curvature and misalignment

phase 0 # turn off phase adjustement

pd1 inphase 40k 0 n1 # photo diode + mixer

f_demod=40kHz phase=0

%%

% PDH lock of cavity

noplot inphase

set err inphase re

lock clock $err -10 .1m

62

3.5 The lock command

%noplot clock

put* m1 phi $clock

pd cav_pow n2

%%

const m1tune 39

xaxis m2 phi lin 0 50 200

maxtem 3

yaxis abs

3.5.2 Setting the lock gain

In order to use a lock successfully we must understand the parameters of the optical
system. Basically we need to know the operating point, the gain of the error signal
at the operating point, the linear range of the error signal and how close we want the
interferometer to be at the operating point to call it ‘in lock’.

Experience has shown that a good startting point for setting the gain is to aim for a
total ’loop gain’ of 1. The following example has been taken from a document describing
GEO 600 simulations, in particular this is the setup of a longitudinal lock of the Power
Recycling degree of freedom.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120 140 160 180

si
gn

al
 [W

]

demodulation phase [deg] (pdPRC)

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-0.1 -0.05 0 0.05 0.1

E
rr

or
 s

ig
na

l s
lo

pe
 [W

/d
eg

]

MPR tuning [deg]

Figure 3.7: left: PRC error signal as a function of the demodulation phase of pdPRC,
maximum signal is obtained at 144.9 deg right: Slope of the PRC error signal as a
function of MPR movement, slope at operating point is 8.5 W/deg

In this case the operating point at the default Power Recycling mirror (MPR) tuning of
ϕ = 0 deg. However, it is often a good idea to check the operating point, in this case
simply by plotting the cavity power as a function of the MPR tuning. Figure 3.7 shows

63

Chapter 3 Mathematical description of light beams and optical components

the next two steps: first compute the optimal phase for the photodiode. The Finesse
code would be:

fsig sig1 MPR 1 0

pd2 pdPRC $fPR 0 1 nBDIPR1

xaxis pdPRC phi1 lin 0 180 200

yaxis abs

The slope of the error signal at the operating point is computed with:

pd1 pdPRC $fPR 144.9 nBDIPR1

diff MPR phi

xaxis MPR phi lin -0.1 .1 100

The slope is 8.5 W/deg. The lock commands works best with minus the inverse gain; we
use −0.1:

pd1 pdPRC $fPR 144.9 nBDIPR1

set errpr pdPRC re

lock prlock $errpr -.1 1m

put* MPR phi $prlock

The accuracy given above as 1m means that the error signal must be smaller than 1 mW.
Which correspond (via the gain) to a 10−4 tuning of MPR or a displacement of 10−4/360∗
λ = 0.3 pm.

3.5.3 Tuning the lock

You can improve the speed of the lock by carefully tuning the following parameters:

• gain: the iteration routines have an ‘autogain’ feature which tries to correct for
wrongly set gain values. However, it can only check for large deviations from optimal
gains. For example, setting the gain wrong by a factor of two typically reduces the
speed of the simulation by a factor of two or worse.
• locking accuracy: the lock accuracy defines how large the residual deviation between

the set locking point and the iterative results should be. Make sure that you know
what accuracy you require and do try not to set more stringent values than those
required.
• xaxis step size: One must make sure that the starting point of the xaxis command is

actually at or close to the set point of any active lock. Otherwise the lock iteration
might fail to find the set point.
Furthermore, in many cases the lock uses on an error signal that does not change
linearly with the parameter with tuned by the xaxis command. In that case the
step size given in the xaxis command should be set small enough so that for each
step the change in the error signal can be still approximated as an almost linear
change. The table below shows the computing times for a Michelson lock in the
GEO 600 input file. This very rough comparison of computation times shows that
various step sizes work quite well (in this example the accuracy was set to 1 pW):

number of steps 700 800 900 1000 2000 3000 10000

computation time 61s 6s 5s 5s 6s 9s 28s

64

3.5 The lock command

Please note that in case of the 700 steps Finesse’s autogain function has changed
the loop gain automatically which also re-calibrates the step size. Even though
in this case the lock was still succesful, it demonstrated that too large step sizes
should be avoided. In the case of the 2000 steps, each step required about 22 internal
iterations to reach the locking accuracy of 1 pW. An accuracy of 0.1 mW could be
achieved with 5 iterations.

200 150 100 50 0 50 100 150 200
phi [deg] (m2)

-300

-250

-200

-150

-100

-50

0

50

100

A
b
s

cphase :

0 10 20 30 40 50
phi [deg] (m2)

-70

-60

-50

-40

-30

-20

-10

0

10

20

A
b
s

cav_pow n2 :

clock :

Figure 3.8: Using a pseudo-lock signal for the lock command: the top plot shows the
error signal, the lower plot shows the correction signal when the lock is active and the
cavity circulating power as a test signal.

65

Chapter 3 Mathematical description of light beams and optical components

3.5.4 A pseudo-lock

Another possibility to create a signal for the lock command is to use a so-called ‘pseudo-
lock’ system in which the simulation signals, such as the phase of a light field is used
to generate an error signal. Since such signal are not available in the experiment, this
cannot represent a real control system. However, it has the advantage of generating
an error signal without the need of extra optical components, suc as the electro-optical
modulator for the PDH scheme shown above. An example for a pseudo-lock in shown in
Figure 3.8 and the Finesse file is given below.

It should be noted that pseudo-locks can be problematic, if they are not set up very
carefully, their operating point might not be identical to that of the real control loop,
which would cause the model to behave differently than the experiment and thus produce
misleading and wrong results. This has been the reason behind a great many wasted
modelling efforts in the GW community!

l i1 1 0 n0

gauss g1 i1 n0 22m -1.2

startnode n0

mod eo1 40k 0.3 3 pm n0 n1 # phase modulator f_mod=40kHz

midx=0.3 order=3

m m1 0.95 0.01 $m1tune n1 n2 # cavity

s s2 1200 n2 n3

m m2 0.99 0.01 0 n3 n4

cav cav1 m1 n2 m2 n3

attr m2 Rc 3000 # distortions, unmatched

attr m1 xbeta 1u # curvature and misalignment

phase 0 # turn off phase adjustement

%%

% Pseudo lock of cavity

ad ph_m11 0 n1*

ad ph_m12 0 n2*

noplot ph_m11

noplot ph_m12

set ph1 ph_m11 deg

set ph2 ph_m12 deg

set offset m1 phi

func cphase = unwrap($ph2 - 2*$offset) - $ph1 -90

noplot cphase

lock clock $cphase .02 1m

%noplot clock

put* m1 phi $clock

pd cav_pow n2

%%

66

3.5 The lock command

const m1tune 100

xaxis m2 phi lin 0 50 800

maxtem 3

yaxis abs

67

68

Chapter 4

Higher-order spatial modes, the paraxial
approximation

The analysis using a plane-wave approximation as described in the previous chapter allows
one to perform a large variety of simulations. Some analysis tasks, however, include the
beam shape and position, i.e. the properties of the field transverse to the optical axis.
The effects of misaligned components, for example, can only be computed if beam shape
and position are taken into account.

The following sections describe a straightforward extension of the previous chapter’s anal-
ysis using transverse electromagnetic modes (TEM). The expression mode in connection
with laser light usually refers to the eigenmodes of a cavity. Here, one distinguishes
between longitudinal modes (along the optical axis) and transverse modes, the spatial
distribution of the light beam perpendicular to the optical axis. In the following, we are
looking at the spatial properties of a laser beam. A beam in this sense is a light field for
which the power is confined to a small volume around one axis (the optical axis, always
denoted by z).

4.1 Finesse with Hermite-Gaussian beams

By default Finesse performs simulations using the plane-wave approximation. If the
input file contains commands which refer explicitly to Gaussian beams, like, for example,
gauss, Finesse will use Hermite-Gaussian beams instead. This is henceforth called the
’Hermite-Gauss extension’.

The command maxtem is used to switch manually between plane-waves and Gaussian
beams and to set the maximum order for higher order TEM modes:
maxtem off switches to plane waves,
maxtem order with order a integer between 0 and 100 switches to Hermite-Gauss beams.
The simulation includes higher order modes TEMnm with n+m ≤order.

The Hermite-Gauss extension of Finesse is a powerful tool. However, it requires some
expert knowledge about the physics and its numerical representation. The following
sections provide the mathematical description of the Gaussian beams as it is used in

69

Chapter 4 Higher-order spatial modes, the paraxial approximation

Finesse. Please see the extra section G.3 in the syntax reference for a description of
commands relevant to Hermite-Gauss beams.

4.2 Gaussian beams

Imagine an electric field that can be described as a sum of the different frequency com-
ponents and of the different spatial modes:

E(t, x, y, z) =
∑
j

∑
n,m

ajnm unm(x, y, z) exp (i (ωj t− kjz)), (4.1)

with unm describing the spatial properties of the beam and ajnm as complex amplitude
factors (ωj is the angular frequency of the light field and kj = ωj/c).

Please note that in this case the amplitude coefficients ajnm are not equivalent to the field
amplitudes as computed by Finesse. There is a difference in phase as a consequence of the
chosen implementation of the Gouy phase; see Section 4.3.3 for details. In the following
the amplitudes ajnm refer to the coefficients as defined in Equation 4.1. The amplitude
coefficients computed and stored by Finesse will be denoted bjnm.

For simplicity we restrict the following description to a single frequency component at
one moment in time (t = 0):

E(x, y, z) = exp (−i kz)
∑
n,m

anm unm(x, y, z). (4.2)

A useful mathematical model for describing spatial properties of light fields in laser inter-
ferometers are the Hermite-Gauss modes, which are the eigenmodes of a general spherical
cavity (an optical cavity with spherical mirrors) and represent an exact solution of the
paraxial wave equation; see Appendix F.2.

The following section provides an introduction to Hermite-Gauss modes, including some
useful formulae and the description of the implementation of Hermite-Gauss modes in
Finesse. Please note that the paraxial approximation requires a well aligned and well
mode-matched interferometer; Section 4.9 gives a short overview of the limits of this
approximation.

The Gaussian beam often describes a simple laser beam to a good approximation. The
Gaussian beam as such is the lowest-order Hermite-Gauss mode u00 which will be dis-
cussed later. The electric field (again assuming a single frequency and t = 0) is given as:

E(x, y, z) = E0u00 exp (−i kz)

= E0

(
1

RC(z) − i λ
πw2(z)

)
· exp

(
−i k x2+y2

2RC(z) −
x2+y2

w2(z)
− i kz

)
.

(4.3)

70

4.2 Gaussian beams

The shape of a Gaussian beam is quite simple: the beam has a circular cross-section, and
the radial intensity profile of a beam with total power P is given by:

I(r) =
2P

πw2(z)
exp

(
−2r2/w2

)
, (4.4)

with w the spot size, defined as the radius at which the intensity is 1/e2 times the
maximum intensity I(0). This is a Gaussian distribution, hence the name Gaussian
beam. Figure 4.1 shows a cross-section through a Gaussian beam and the radial intensity
for different positions with respect to the beam position and beam size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 0 1 2 3

In
te

si
ty

 [I
/I 0

]

Position [x/w]

654

3

2

1

w

�
�
�
� �����

�
	��
�
	�
����� �����

�
	 � �
�
	 �
�
	 ���

� ���
�
�

���� ����� �
�������

�
���! 	#"%$ &�	'&($

Figure 4.1: One dimensional cross-section of a Gaussian beam. The width of the beam
is given by the radius w at which the intensity is 1/e2 of the maximum intensity.

Such a beam profile (for a beam with a given wavelength λ) can be completely determined
by two parameters: the size of the minimum spot size w0 (called beam waist) and the
position z0 of the beam waist along the z-axis.

To characterise a Gaussian beam, some useful parameters can be derived from w0 and z0.
A Gaussian beam can be divided into two different sections along the z-axis: a near field
(a region around the beam waist) and a far field (far away from the waist). The length
of the near-field region is approximately given by the Rayleigh range zR. The Rayleigh
range and the spot size are related by the following expression:

zR =
πw2

0

λ
. (4.5)

With the Rayleigh range and the location of the beam waist, we can write the following
useful expression:

w(z) = w0

√
1 +

(
z − z0

zR

)2

. (4.6)

71

Chapter 4 Higher-order spatial modes, the paraxial approximation

This equation gives the size of the beam along the z-axis. In the far-field regime (z �
zR, z0), it can be approximated by a linear equation:

w(z) ≈ w0
z

zR
=

zλ

πω0
. (4.7)

The angle Θ between the z-axis and w(z) in the far field is called the diffraction angle1

and is defined as:

Θ = arctan

(
w0

zR

)
= arctan

(
λ

πw0

)
≈ w0

zR
. (4.8)

Another useful parameter is the radius of curvature of the wavefront at a given point z.
The radius of curvature describes the curvature of the ‘phase front’ of the electromagnetic
wave (a surface across the beam with equal phase) at the position z. We obtain for the
radius of curvature as a fuction of z:

RC(z) = z − z0 +
z2

R

z − z0
. (4.9)

For the radius of curvature we also find:

RC ≈ ∞, z − z0 � zR (beam waist)

RC ≈ z, z � zR, z0 (far field)

RC = 2zR, z − z0 = zR (maximum curvature)

(4.10)

4.3 Higher order Hermite-Gauss modes

The Hermite-Gauss modes are usually given in their orthonormal form as:

unm(x, y, z) =
(
2n+m−1n!m!π

)−1/2 1
w(z) exp (i (n+m+ 1)Ψ(z))

× Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

(
−i k(x2+y2)

2RC(z) −
x2+y2

w2(z)

)
,

(4.11)

with n, m being the mode numbers or mode indices. In this case n refers to the modes in
the y-z plane (saggital) and m to the x-z plane (tangential). The following functions are
used in the equation above:

• Hn(x): Hermite polynomial of the order n (unnormalised), see Appendix F.1,
• w(z): beam radius or spot size,
• RC(z): radius of curvature of the phase front,
• Ψ(z): Gouy phase.

1 Also known as the far-field angle or the divergence of the beam.

72

4.3 Higher order Hermite-Gauss modes

The definition of Ψ(z) and some explanation is given in Section 4.3.3. The Hermite-Gauss
modes can also be given in a very compact form using the Gaussian beam parameter q;
see below.

The Hermite-Gauss modes as given above are orthonormal and thus:∫∫
dxdy unmu

∗
n′m′ = δnn′δmm′ . (4.12)

Therefore the power of a beam, as given by Equation 4.2, being detected on a single-
element photodetector (provided that the area of the detector is large with respect to the
beam) can be computed as

P =
∑
n,m

anma
∗
nm. (4.13)

Or for a beam with several frequency components (compare with Equation 3.125):

P =
∑
n,m

∑
i

∑
j

ainma
∗
jnm with {i, j | i, j ∈ {0, . . . , N} ∧ ωi = ωj}. (4.14)

The x and y dependencies can be separated so that:

unm(x, y, z) = un(x, z)um(y, z). (4.15)

4.3.1 Gaussian beam parameter

A set of Hermite-Gauss modes unm can be described by one constant beam parameter
q0: the Gaussian beam parameter. It is defined as:

1

q(z)
=

1

RC(z)
− i

λ

πw2(z)
, (4.16)

and can also be written as:

q(z) = i zR + z − z0 = q0 + z − z0, where q0 = i zR. (4.17)

The beam parameter q0 is in general changed when the beam interacts with a spherical
surface.

Using this parameter Equation 4.3 can be rewritten as:

u(x, y, z) =
1

q(z)
exp

(
−i k

x2 + y2

2q(z)

)
. (4.18)

The complete set of solutions as given in Equation 4.11 can now be written as2:

unm(x, y, z) = un(x, z)um(y, z), (4.19)

2 Please note that this formula from [Siegman] is very compact. Since the parameter q is a complex
number, the expression contains at least two complex square roots. The complex square root requires
a different algebra than the standard square root for real numbers. Especially the third and fourth

factors cannot be simplified in any obvious way i.e.:
(
q0
q(z)

)1/2 (
q0q

∗(z)
q∗0q(z)

)n/2
6=

(
qn+1
0 q∗n(z)

qn+1(z)q∗0
n

)1/2

!

73

Chapter 4 Higher-order spatial modes, the paraxial approximation

with

un(x, z) =

(
2

π

)1/4(1

2nn!w0

)1/2(q0

q(z)

)1/2(q0 q
∗(z)

q∗0 q(z)

)n/2
Hn

(√
2x

w(z)

)
exp

(
−i

kx2

2q(z)

)
(4.20)

again, Hn(x) represents a Hermite polynomial of order n.

The beam size and radius of curvature can also be written in terms of the beam parameter
q:

w2(z) =
λ

π

|q|2

Im {q}
, (4.21)

and

RC(z) =
|q|2

Re {q}
. (4.22)

It is clear that when using Hermite-Gauss modes one has to choose a base system of
beam parameters for describing the spatial properties. In Finesse this means a beam
parameter has to be set for every node. Much of this task is automated; see Section 4.4.
In my experience the quality of the simulations and the correctness of the results depend
critically on the choice of these beam parameters. One might argue that the choice of the
base system should not alter the result. This is correct but there is a practical limitation:
the number of modes having non-neglible power might become very large if the beam
parameters are not optimised, so that in practise to achieve a sensible computation time
a good set of beam parameters must be used. Section 4.9 gives some advice how to ensure
that the simulation does not fail because of this limitation.

4.3.2 Tangential and sagittal plane

If the interferometer is confined to a plane as in Finesse, it is convenient to use projections
of the three-dimensional description into two planes: the tangential plane, defined as the
x-z plane and the sagittal plane as given by y and z.

The beam parameter can then be split into two beam parameters: qs for the sagittal
plane and qt for the tangential plane so that the Hermite-Gauss modes can be written as:

unm(x, y) = un(x, qt) um(y, qs). (4.23)

Remember that these Hermite-Gauss modes form a base system. This means one can use
the separation in sagittal and tangential planes even if the analysed optical system does
not show this special type of asymmetry. This separation is very useful in simplifying the
mathematics.

In the following, the term beam parameter generally refers to a simple q0 but all the
results can also be applied directly to a pair of parameters qs, qt.

74

4.3 Higher order Hermite-Gauss modes

4.3.3 Gouy phase shift

The introduction of spatial beam properties using Hermite-Gauss modes gives rise to an
extra longitudinal phase lag, this is the Gouy phase. Compared to a plane wave, the
Hermite-Gauss modes have a slightly slower phase velocity, especially close to the waist.
The Gouy phase can be written as:

Ψ(z) = arctan

(
z − z0

zR

)
, (4.24)

or, using the Gaussian beam parameter:

Ψ(z) = arctan

(
Re {q}
Im {q}

)
. (4.25)

Compared to a plane wave, the phase lag ϕ of a Hermite-Gauss mode is:

ϕ = (n+m+ 1)Ψ(z). (4.26)

With an astigmatic beam, i.e. different beam parameters in the tangential and saggital
planes this becomes:

ϕ =

(
n+

1

2

)
Ψt(z) +

(
m+

1

2

)
Ψs(z), (4.27)

with

Ψt(z) = arctan

(
Re {qt}
Im {qt}

)
, (4.28)

as the Gouy phase in the tangential plane (and Ψs similarly the Gouy phase in the sagittal
plane).

The command phase can be used to specify how the Gouy phase is used within the
Finesse simulation, see Section G.3.

4.3.4 ABCD matrices

The transformation of the beam parameter can be performed by the ABCD matrix-
formalism [Siegman]. When a beam passes a mirror, beam splitter, lens or free space, a
beam parameter q1 is transformed to q2. This transformation can be described by four
real coefficients like so:

q2

n2
=
A q1
n1

+B

C q1
n1

+D
, (4.29)

with the coefficient matrix,

M =

(
A B
C D

)
, (4.30)

75

Chapter 4 Higher-order spatial modes, the paraxial approximation

and n1 being the index of refraction at the beam segment defined by q1 and n2 the index
of refraction at the beam segment described by q2.

The ABCD matrices for the optical components used by Finesse are given below, for
the sagittal and tangential plane respectively.

Transmission through a mirror: A mirror in this context is a single, partly reflecting
surface with an angle of incidence of 90◦. The transmission is described by:

M =

(
1 0

n2−n1
RC

1

)
(4.31)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

q1 q2

1 2n n

with RC being the radius of curvature of the spherical surface. The sign of the radius is
defined such that RC is negative if the centre of the sphere is located in the direction of
propagation. The curvature shown above (in Equation 4.31), for example, is described
by a positive radius.

The matrix for the transmission in the opposite direction of propagation is identical.

Reflection at a mirror: The matrix for reflection is given by:

M =

(
1 0

−2n1
RC

1

)
(4.32)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

2n1n
q

q

2

1

The reflection at the back surface can be described by the same type of matrix by setting
C = 2n2/RC.

Transmission through a beam splitter: A beam splitter is understood as a single surface
with an arbitrary angle of incidence α1. The matrices for transmission and reflection are
different for the sagittal and tangential planes (Ms and Mt):

Mt =

(
cos (α2)
cos (α1) 0

∆n
RC

cos (α1)
cos (α2)

)

Ms =

(
1 0

∆n
RC

1

) (4.33)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

1n 2n1α

q1 q2

α2

with α2 given by Snell’s law:

n1 sin (α1) = n2 sin (α2), (4.34)

76

4.3 Higher order Hermite-Gauss modes

and ∆n for the tangential beam is:

∆n =
n2 cos (α2)− n1 cos (α1)

cos (α1) cos (α2)
. (4.35)

and for the sagittal beam

∆n = n2 cos (α2)− n1 cos (α1) (4.36)

If the direction of propagation is reversed, the matrix for the sagittal plane is identical
and the matrix for the tangential plane can be obtained by changing the coefficients A
and D as follows:

A −→ 1/A,
D −→ 1/D.

(4.37)

Reflection at a beam splitter: The reflection at the front surface of a beam splitter is
given by:

Mt =

(
1 0

− 2n1
RC cos (α1) 1

)

Ms =

(
1 0

−2n1 cos (α1)
RC

1

) (4.38)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

1α
q1

q2

2n1n

To describe a reflection at the back surface the matrices have to be changed as follows:

RC −→ −RC,
n1 −→ n2,
α1 −→ −α2.

(4.39)

Transmission through a thin lens: A thin lens transforms the beam parameter as fol-
lows:

M =

(
1 0
− 1
f 1

)
(4.40)

q1 q2

where f is the focal length. The matrix for the opposite direction of propagation is identi-
cal. Please note that a thin lens has to be surrounded by ‘spaces’ with index of refraction
n = 1.

77

Chapter 4 Higher-order spatial modes, the paraxial approximation

Transmission through a free space: As mentioned above, the beam in free space can
be described by one base parameter q0. In some cases it is convenient to use a similar
matrix as for the other components to describe the z-dependency of q(z) = q0 + z. On
propagation through a free space of the length L and index of refraction n the beam
parameter is transformed as follows:

M =

(
1 L

n
0 1

)
(4.41)

q1 q2
Space

The matrix for the opposite direction of propagation is identical.

Reflection at a grating: Consider a curved diffraction grating with radius of curvature
R, ruling in the y-direction and grating spacing d in the x-direction. An incident beam
striking the grating at an angle α from the normal in the x− z plane will be diffracted in
mth order into angle φm in the same plane given by the grating equation Equation 3.55.

The matrix for reflection from the grating in the tangential or x− z plane is given by:

Mt =

(
M 0
−2/Rt 1/M

)

Ms =

(
1 0

−2/Rs 1

) (4.42)

(m=0)

1q

q
2

q
2

(m=1)

with M given by:

M = cos(φm)/ cos(α), (4.43)

ı̈¿1
2 and effective radii as:

Rt = R
cos(α) cos(φm)

cos(α) + cos(φm)
, (4.44)

Rs =
2R

cos(α) + cos(φm)
. (4.45)

4.4 Tracing the beam

As described in Section 4.3.1 one important step in the simulation is the choice of beam
parameters. In general the Gaussian beam parameter of a TEM00 mode is changed at
every optical surface (see Section 4.3.4). In other words, for each location inside the

78

4.4 Tracing the beam

interferometer where field amplitudes are to be computed a certain beam parameter has
to be set for the simulation.

A possible method to find reasonable beam parameters for every location in the interfer-
ometer (every node in Finesse) is to first set only some specific beam parameters and
then derive the remaining beam parameters from these initial ones: usually it is sensible
to assume that the beam at the input can be properly described by the (hopefully known)
beam parameter of the laser’s output mode. In addition, in most cavities the light fields
can be described safely by using cavity eigenmodes. Finesse provides two commands,
gauss and cav, that can be used for setting beam parameters. The command cav com-
putes the eigenmodes of a (stable) cavity and sets the respective beam parameters on
every node that is part of the cavity. Whereas the command gauss is used to set a beam
parameter at one specific node, for example, at the input. The two types of commands
are executed as follows:

• Each cav command checks if the respective cavity is stable and, if so, it computes
the eigenmode, and sets the respective beam parameters at every node that is inside
the cavity.
• The cav commands are executed in the order they appear in the input file. If two

cavities include the same node, the later command overwrites the beam parameter
set for this node by previous cav commands.
• After the cavities have been all set, the gauss commands are executed. If a gauss

command is set to a node inside a cavity the beam parameter set by the cav com-
mand will be overwritten by the one given in the gauss command.

After some beam parameters have been set by gauss or cav commands Finesse uses a
beam tracing algorithm to set beam parameters for the remaining nodes. ‘Trace’ in this
context means that a beam starting at a node with an already known beam parameter is
propagated through the optical system and the beam parameter is transformed according
to the optical elements encountered.

The tracing algorithm in Finesse works as follows:

• the starting point of the tracing can be set explicitly by the user with the command
startnode nodename (the beam parameter of the respective node has to be set with
either gauss or cav). If this command is not used the starting point is automatically
set:

– to the input node of the (first) cavity if the user has specified at least one
stable cavity;

– to the node given in the first gauss command, if the user specified at least one
Gaussian parameter but no cavity;

– to the node of the first laser if the user did not specify any beam parameter.
In addition, Finesse sets the beam parameter of that input node to a default
beam parameter: q = i (2 mm)2π/λ (i.e. w0 = 2 mm, z0 = 0 mm).

• from the starting point the beam is traced through the full interferometer simply
by following all possible paths successively. This is done by moving from the start
node to a connecting component then to the next node, to the next component and

79

Chapter 4 Higher-order spatial modes, the paraxial approximation

so on. At every optical element along the path the beam parameter is transformed
according to the ABCD matrix of the element (see below). If more than one pos-
sibility exists (for example at a beam splitter) the various paths are followed one
after the other. Each path ends, i.e. is considered to be traced completely, when an
already encountered node or a ‘dump’ node is found.
• Every time a new node is found for which no beam parameter has been yet set the

current beam parameter is set for that node.
• If a new node is found that already has a beam parameter (for example, by the user

with a gauss command) the current beam parameter is dropped and the parameter
of the node is kept and used for further tracing along that path instead. In this
case the tracing algorithm makes sure that no such beam parameter change occurs
inside space components3.
• When all paths have been traced completely, the number of nodes found is compared

to the total number of nodes of the setup and an error is generated if these numbers
do not match.

During the simulation, if a length, radius of curvature, or focal length is changed, the
optimum set of base parameters changes. When Finesse detects a change in one of
these parameters is automatically recompute the best beam parameters for each data
point. This will slow down the simulation a little but in almost all cases it yields much
better results. You can use the command retrace to force Finesse to recompute beam
parameters for each data point. Or you can force it to switch retracing off in all cases,
using the command retrace off.

Finesse can provide plenty of information about the tracing and the resulting beam
parameters. The command trace can be used to set the verbosity of Finesse’s tracing
algorithm or, more generally, the verbosity of the Hermite-Gauss mode; see the table on
page 210 in the syntax reference.

4.5 Interferometer matrix with Hermite-Gauss modes

In the plane-wave analysis, a laser beam was described in general by the sum of various
frequency components of its electric field:

E(t, z) =
∑
j

aj exp
(

i (ωj t− kjz)
)
. (4.46)

Now, the geometric shape of the beam is included by describing each frequency component
by a sum of Hermite-Gauss modes:

E(t, x, y, z) =
∑
j

∑
n,m

ajnm unm(x, y) exp (i (ωj t− kjz)). (4.47)

3 It is important for the chosen implementation of the Gouy phase (see Section 4.5) that the beam
parameter for both nodes of a space component refer to the same beam waist.

80

4.5 Interferometer matrix with Hermite-Gauss modes

The shape of such a beam does not change along the z-axis (in the paraxial approxi-
mation). More precisely, the spot size and the position of the maximum intensity with
respect to the z-axis may change, but the relative intensity distribution across the beam
does not change its shape.

Each part of the sum may be treated as an independent field that can be described using
the equation for the plane-wave approximation with only two exceptions:

• the propagation through free space has to include the Gouy phase shift, and
• upon reflection or transmission at a mirror or beam splitter the different Hermite-

Gauss modes may be coupled (see below).

The Gouy phase shift can be included into the simulation in several ways. For reasons of
flexibility is has been included in Finesse as a phase shift of the component space. The
beam trace algorithm has been designed to set the beam parameters of a space component
so that at both nodes the beam parameter gives the same Gouy phases. Therefore it is
possible to associate the component with a known phase delay. The amplitude of a field
propagating through a space is thus given by:

bout = bin exp

(
i ∆ωnrL/c−

(
1

2
+ n

)
Ψx +

(
1

2
+m

)
Ψy

)
, (4.48)

(compare to Equation 3.40).

This means the Gouy phases are stored explicitly in the amplitude coefficients. Therefore,
the amplitudes bin/out are not equivalent to these ajnm in Equation 4.47 or Equation 4.1.
In fact, the field amplitude is given in Finesse (for one point in space, and t = 0) as:

E(t, x, y, z) =
∑
j

∑
n,m

bjnm un(x)um(y) exp

(
−i

(
1

2
+ n

)
Ψt)

)
exp

(
−i

(
1

2
+m

)
Ψs)

)
,

(4.49)

with

Ψt = arctan

(
Re {qt}
Im {qt}

)
, Ψs = arctan

(
Re {qs}
Im {qs}

)
. (4.50)

This formula is used, for example, with the beam detector.

Also, changing from one TEM base system to another it is necessary to turn back the
Gouy phase with respect to the old beam parameter and add the Gouy phase with respect
to the new beam parameter. This is required because the coupling coefficients used in the
computation in Section 4.6.1 were derived from the field description given by Equation 4.1
for which the Gouy phase is not stored in the amplitude coefficients but implicitly given
by the spatial distribution.

81

Chapter 4 Higher-order spatial modes, the paraxial approximation

4.6 Coupling of Hermite-Gauss modes

The following is based on the work of F. Bayer-Helms [Bayer-Helms]. I later discovered
that there exists a very good description of coupling coefficients by J. Y. Vinet [VPB].

Let us assume two different cavities with different sets of eigenmodes. The first set is
characterised by the beam parameter q1 and the second by the parameter q2. A beam
with all power in the fundamental mode TEM00(q1) leaves the first cavity and is injected
into the second. Here, two ‘mis-configurations’ are possible:

• if the optical axes of the beam and the second cavity do not overlap perfectly, the
setup is called misaligned,
• if the beam size or shape at the second cavity does not match the beam shape and

size of the (resonant) fundamental eigenmode (q1(zcav) 6= q2(zcav)), the beam is
then not mode-matched to the second cavity, i.e. there is a mode mismatch.

The above mis-configurations can be used in the context of simple beam segments. In
the simulation, the beam parameter for the input light is specified by the user. Ideally,
the ABCD matrices allow one to trace a beam through the optical system by computing
the proper beam parameter for each beam segment. In this case, the basis system of
Hermite-Gauss modes is transformed in the same way as the beam so that the modes are
not coupled.

For example, an input beam described by the beam parameter q1 is passed through
several optical components, and at each component the beam parameter is transformed
according to the respective ABCD matrix. Thus, the electric field in each beam segment is
described by Hermite-Gauss modes based on different beam parameters, but the relative
power between the Hermite-Gauss modes with different mode numbers remains constant,
i.e. a beam in a TEM00 mode is described as a pure TEM00 mode throughout the full
system.

In practice, it is usually impossible to compute proper beam parameters for each beam
segment as above, especially when the beam passes a certain segment more than once.
The most simple example is the reflection at a spherical mirror. Let the input beam be
described by q1. From Equation 4.32 we know that the proper beam parameter of the
reflected beam is:

q2 =
q1

−2q1/RC + 1
, (4.51)

with RC being the radius of curvature of the mirror. In general, we get q1 6= q2 and thus
two different ‘proper’ beam parameters for the same beam segment. Only one special
radius of curvature would result in matched beam parameters (q1 = q2).

4.6.1 Coupling coefficients for TEM modes

The Hermite-Gauss modes are coupled whenever a beam is not matched to a cavity or to
a beam segment or if the beam and the segment are misaligned. In this case, the beam has

82

4.6 Coupling of Hermite-Gauss modes

to be described using the parameters of the beam segment (beam parameter and optical
axis). This is always possible (provided that the paraxial approximation holds) because
each set of Hermite-Gauss modes (defined by the beam parameter at a position z) forms a
complete set. Such a change of the basis system results in a different distribution of light
power in the (new) Hermite-Gauss modes and can be expressed by coupling coefficients
that yield the change in the light amplitude and phase with respect to mode number.

Let us assume a beam described by the beam parameter q1 being injected into a segment
described by the parameter q2. Let the optical axis of the beam be misaligned: the
coordinate system of the beam is given by (x, y, z) and the beam travels along the z-axis.
The beam segment is parallel to the z′-axis and the coordinate system (x′, y′, z′) is given
by rotating the (x, y, z) system around the y-axis by the misalignment angle γ. The
coupling coefficients are defined as:

unm(q1) exp
(

i (ωt− kz)
)

=
∑
n′,m′

kn,m,n′,m′un′m′(q2) exp
(

i (ωt− kz′)
)
, (4.52)

where unm(q1) are the Hermite-Gauss modes used to describe the injected beam and
un′m′(q2) are the ‘new’ modes that are used to describe the light in the beam segment.
Please note that including the plane wave phase propagation into the definition of cou-
pling coefficients is very important because it results in coupling coefficients that are
independent of the position on the optical axis for which the coupling coefficients are
computed.

Using the fact that the Hermite-Gauss modes unm are orthonormal, we can compute the
coupling coefficients by the following inner product [Bayer-Helms]:

kn,m,n′,m′ = exp
(

i 2kz′ sin2
(γ

2

))∫∫
dx′dy′ un′m′ exp

(
i kx′ sin γ

)
u∗nm (4.53)

= exp
(

i 2kz′ sin2
(γ

2

)) 〈
un′m′ exp

(
i kx′ sin γ

)
, unm

〉
. (4.54)

Since the Hermite-Gauss modes can be separated with respect to x and y, the coupling
coefficents can also be split into knmn′m′ = knn′kmm′ . These equations are very useful in
the paraxial approximation as the coupling coefficients decrease with large mode numbers.
In order to be described as paraxial, the angle γ must not be larger than the diffraction
angle. In addition, to obtain correct results with a finite number of modes the beam
parameters q1 and q2 must not differ too much, see Section 4.9.

The convolution given in Equation 4.53 can be directly computed using numerical inte-
gration. This is computationally very expensive. In [Bayer-Helms] the above projection
integral is partly solved and the coupling coefficients are given by simple sums as functions
of γ and the mode mismatch parameter K, which are defined by:

K =
1

2
(K0 + iK2), (4.55)

where K0 = (zR − z′R)/z′R and K2 = ((z − z0)− (z′ − z′0))/z′R. This can be also written

83

Chapter 4 Higher-order spatial modes, the paraxial approximation

as (using q = i zR + z − z0):

K =
i (q − q′)∗

2 Im(q′)
. (4.56)

The coupling coefficients for misalignment and mismatch (but no lateral displacement)
can be then be written as:

knn′ = (−1)n
′
E(x)(n!n′!)1/2(1 +K0)n/2+1/4(1 +K∗)−(n+n′+1)/2 {Sg − Su} , (4.57)

where:

Sg =
[n/2]∑
µ=0

[n′/2]∑
µ′=0

(−1)µX̄n−2µXn′−2µ′

(n−2µ)!(n′−2µ′)!

min(µ,µ′)∑
σ=0

(−1)σF̄µ−σFµ
′−σ

(2σ)!(µ−σ)!(µ′−σ)! ,

Su =
[(n−1)/2]∑
µ=0

[(n′−1)/2]∑
µ′=0

(−1)µX̄n−2µ−1Xn′−2µ′−1

(n−2µ−1)!(n′−2µ′−1)!

min(µ,µ′)∑
σ=0

(−1)σF̄µ−σFµ
′−σ

(2σ+1)!(µ−σ)!(µ′−σ)! .

(4.58)

Su does not exist for n = n′ = 0, due to negative factorials in the denominator. The
respective formula for kmm′ can be obtained by replacing the following parameters: n→
m, n′ → m′, X, X̄ → 0 and E(x) → 1 (see below). The notation [n/2] means:[m

2

]
=

{
m/2 if m is even,
(m− 1)/2 if m is odd.

(4.59)

The other abbreviations used in the above definition are:

X̄ = (i z′R − z′) sin (γ)/(
√

1 +K∗w0),

X = (i zR + z′) sin (γ)/(
√

1 +K∗w0),

F = K/(2(1 +K0)),

F̄ = K∗/2,

E(x) = exp
(
−XX̄

2

)
.

(4.60)

In general, the Gaussian beam parameter might be different for the sagittal and tangential
planes and a misalignment can be given for both possible axes (around the y-axis and
around the x-axis), in this case the coupling coefficients are given by:

knmm′n′ = knn′kmm′ , (4.61)

where knn′ is given above with

q → qt
and
w0 → wt,0, etc.,

(4.62)

84

4.6 Coupling of Hermite-Gauss modes

and γ → γy is a rotation about the y-axis. The kmm′ can be obtained with the same
formula, replacing:

n→ m,
n′ → m′,
q → qs,
thus
w0 → ws,0, etc.,

(4.63)

and γ → γx is a rotation about the x-axis.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

k 3k

k k2

1

4

Figure 4.2: Coupling coefficients for Hermite-Gauss modes: for each optical element and
each direction of propagation complex coefficients k for transmission and reflection have
to be computed. In this figure k1, k2, k3, k4 each represents a matrix of coefficients
knmn′m′ describing the coupling of TEMn,m into TEMn′,m′ .

At each component a matrix of coupling coefficients has to be computed for transmission
and reflection; see Figure 4.2.

4.6.2 Alignment transfer function

An alignment transfer function in this context is the ratio between any interferometer
output signal and a periodic change of the alignment angle of a mirror or beam splitter.
Such transfer functions are needed for calculating the coupling of alignment noise into
longitudinal interferometer signals and for the design of auto-alignment control systems.

As in the plane-wave approximation the source signal is injected into the interferometer
via the command fsig. A modulation of the alignment of a mirror or beam splitter
creates sidebands at the modulation frequency. We now derive the amplitude and phase
of these sidebands (with respect to the impinging light).

First, the amplitude coefficients ajnm of the incoming light field are stored, with j as the
frequency index and n,m as the TEM mode indices. Then the static couplings between
TEM modes due to a possible static misalignment or mode mismatch are computed, so
that the amplitude coefficients of the reflected field can be computed:

a′jn′m′ =
∑
n,m

kn′m′nmajnm exp (iϕsb), (4.64)

where ϕsb is the plane wave phase shift acquired through a possible detuning of the
component from the reference plane as given by Equation 3.103.

85

Chapter 4 Higher-order spatial modes, the paraxial approximation

The beam, now given by a′jn′m′ is again misaligned by an angle of γ = ε sin (ωmt). The
coupling coefficients simplify if only misalignment is considered:

knn′ = (−1)n
′
E(x)(n!n′!)1/2

min (n,n′)∑
µ=0

(−1)µX̄n−µXn′−µ

µ!(n− µ)!(n′ − µ)!
, (4.65)

where

X̄ = X∗ =
−(z′ − i z′R) sin γ

w′0
, (4.66)

For the transfer function, only the terms linear in γ and thus linear in X have to be
considered. Only one addend of the above sum can be linear in X and only if |n−n′| = 1.
In edition the exponential function can be neglected E(y) = 1, E(x) = 1 + O(γ2). Thus
the sum reduces to:

min (n,n′)∑
µ=0

(−1)µX̄n−µXn′−µ

µ!(n− µ)!(n′ − µ)!
= O(X2) +

(−1)n

′
X̄

n′! for n = n′ + 1
(−1)nX

n! for n′ = n+ 1
1 for n′ = n
0 otherwise

(4.67)

The coupling coefficients can now be written as:

knn′ =

√
nX̄ for n = n′ + 1,

−
√
n′X̄∗ for n′ = n+ 1,
1 for n′ = n,
0 otherwise.

(4.68)

4.7 Mirror surface maps

The term mirror map often refers to a scan of a manufactured mirror obtained by inter-
ferometric means, the resulting map contains, for example, measurements of the surface
height or substrate transmission measured at the nodes of an x, y grid. More generally
we can think of a surface map as a two dimensional data array describing properties of
the reflection or transmission of an optical surface as a function of the position on the
surface.

Typically a mirror map is subject to pre-processing to remove average effects, like a tilt
of the entire surface arising from the measurement process. Often, further processing is
done to remove the expected optical profile of the mirror in order to measure only the
residual deviations, for example the surface roughness.

Phase maps, for example, are of great importance for the purpose of estimating noises
introduced by mirror surface aberrations. In the initial design of an interferometer we
assume the mirrors to have perfectly smooth surfaces, yet the manufacturing process
introduces various surface distortions, for example, a surface roughness on the order of a

86

4.7 Mirror surface maps

nanometre. By providing an accurate simulation including surface distortions, potential
design problems can be identified before the experimental apparatus is being build.

Three types of surface maps can be applied to mirror components in Finesse: phase
maps, absorption maps and reflectivity maps. ‘phase maps’ and ‘absorption maps’ can be
set to affect only the reflected light, only the transmitted light or affecting both light fields.
‘Reflectivity maps’ always change the reflected and transmitted light. Please note that the
name ‘phase map’ refers to the effect the map has on the impinging light field. However,
the numerical values stored in the map files are not phases but surface distortions in
meters. The values for higher parts of the surface are defined as positive whereas ’holes’
are indicated by negative values. The numerical data in ‘absorption maps’ represent
power loss coefficients (values between 0 and 1) and ‘reflectivity maps’ are composed of
power reflectivity coefficients (values between 0 and 1).

If the amplitude reflectivity r of a mirror is constant over its entire surface but the mirror
surface is not perfectly smooth and the surface data is available, the reflection of a field
from a mirror can be described by a phase map. Alternatively we can imagine mirrors
which are considered perfectly smooth but are subject to absorption that varies with the
exact position on the surface. This effect can be studied using absorption maps. Real mir-
rors are never perfectly smooth, nor do they feature a perfectly homogeneous reflectance
or transmittance. Therefore, in general a mirror surface could be best described with a
map storing phase and amplitude information together. However, the implementation of
surface maps in Finesse uses separate maps, giving information either on the effects on
the light phase, the absorption or the reflectivity. Yet, several maps of different types can
be applied to the same surface simultaneously.

4.7.1 Phase maps

The effect of a phase map on the reflected field can be described mathematically as:

Erefl = r exp (iϕ(x, y)) Ein (4.69)

with

ϕ(x, y) = 2
n1ω

λω0
φp(x, y) (4.70)

and n1 the index of refraction of the medium we are in and φp the measured surface map
of the mirror surface, given in metres. Positive values refer to higher parts of the surface
and negative to lower.

The frequencies are defined as usual, ω is the frequency of the light field impinging on the
surface and ω0 the frequency corresponding to the default wavelength λ0. For simplicity
we assume that λ can be replaced by λ0 and the factor ω/ω0 can be approximated as 1.
We then obtain:

Erefl = r exp (2i n1 φp(x, y)/λ0) Ein (4.71)

87

Chapter 4 Higher-order spatial modes, the paraxial approximation

The transmission can be written as

Etrans = i t exp (i (n1 − n2)φp(x, y)/λ0) Ein (4.72)

4.7.2 Absorption maps

The reflected field subject to an absorption map can be written as

Erefl = r
√

1− L(x, y) Ein (4.73)

with L(x, zy) the measured absorption map of the mirror surface, given in power coeffi-
cients. The transmission can be written as

Etrans = i t
√

1− L(x, y) Ein (4.74)

4.7.3 Reflectivity maps

Reflectivity maps are implemented slightly differently because they replace the mirror
parameters r and t given in the mirror command. These values are used to compute a
loss factor L = 1 − r2 − t2 and then are set internally to 1. The reflected field can then
be written as

Erefl =
√
R(x, y)

√
1− L Ein (4.75)

with R(x, zy) the measured reflectivity map of the mirror surface, given in power coeffi-
cients. The transmitted field can be written as

Etrans = i
√

1−R(x, y)
√

1− L Ein (4.76)

4.7.4 Coupling coefficients from mirror maps

In Finesse the shape of a field is not given as a function of x,y coordinates but by a sum
of Hermite-Gauss modes of different orders. Therefore the effect of a mirror map needs
to be described as scattering into higher order modes. The coupling coefficients can be
computed by the usual integral. In the case of the reflection we obtain, for example:

kn,m,n′,m′ =

∫ ∫
dx′ dy′ un′,m′ exp(2i n1 φp(x

′, y′)/λ0)u∗n,m (4.77)

which can be computed directly using a numerical integration routine or in some specific
cases analytically.

In order to be compatible with already existing coupling coefficients the following ap-
proach has been chosen: The coupling coefficients due to a mirror map are computed
independently of any misalignment or change in Gaussian beam parameter that occurs

88

4.7 Mirror surface maps

at the given mirror. Therefore for any given map function A(x, y) the coefficients with
respect to a field impinging on the front face of the mirror are computed as:

kmap
n,m,n′,m′ =

∫ ∫
dx′ dy′ u(n′,m′, q1, n1)A(x′, y′)u∗(n,m, q1, n1) (4.78)

with q1 and n1 being the Gaussian beam parameter and the index of refraction of the
node in front of the mirror, respectively. This equation is true for reflection as well
as transmission (the map function A would be different between those cases of course).
The coefficients are then merged with the other coupling coefficients, see Appendix E.
This approach allows to seamlessly use together multiple maps as well as additional
attributes to mirrors such as radius of curvature and alignment angle. However, the
sperate computation and subsequent merging of coupling coefficients is an approximation
when only a finite set of modes is used. In consequence, one has to be very careful in
setting up a model using maps; there are a few configuration commands which can be used
to select the best method for computing and merging the coefficients, see Section 4.7.13.

The following table4 gives an overview of the map functions in the different cases. B(x, y)
shall be a matrix of real numbers representing the data stored in the map file.

type of map fields affected A(x, y)(refl.) A(x, y) (trans.)

phase reflection exp(i 2k n1B(x, y)) 1

phase transmisson 1 exp(−i kB(x, y))

phase both exp(i 2k n1B(x, y)) exp(−i k (n1 − n2)B(x, y))

absorption reflection
√

1−B(x, y) 1

absorption transmission 1
√

1−B(x, y)

absorption both
√

1−B(x, y)
√

1−B(x, y)

reflectivity both
√

1− L
√
B(x, y)

√
1− L

√
1−B(x, y)

with n1, n2 the indices of refraction of the medium before and after the surface respec-
tively.

4.7.5 The map file format

A mirror map file can contains the mirror map as a grid B(x, y). The data grid B(x, y)
must be stored as follows. The data is preceded by a header consisting of seven lines, for
example:

% Surface map

% Name: test

% Type: phase transmission

% Size: 201 201

% Optical center (x,y): 101 101

% Step size (x,y): 0.0001 0.0001

% Scaling: 5.32e-07

4 Please note in the different entries of the table B((x, y) represents different data types of different
dimension.

89

Chapter 4 Higher-order spatial modes, the paraxial approximation

The first line indicates that a map of grid data follows, the second line specifies the name
of the map and the third line the type of the map. Possible types are:

• phase transmission
• phase reflection
• phase both
• absorption transmission
• absorption reflection
• absorption both
• reflectivity both

The fourth line states the number of rows and columns of the map data, line five gives
the optical center (in real numbers referring to grid indices, starting at zero), typically
the center is at (cols+1)/2,(rows+1)/2.

Line number six gives the physical length (in meters) of one grid elements in the x and
y directions of one grid element. The overall size of the grid in relation to the size of the
light field must be chosen very carefully to avoid numerical errors. Finesse computes a
typical size of the light field as follows. The maximum diameter in the horizontal direction
is given as:

dbeam,x = 2 wx(z)
√

maxtem + 0.5 (4.79)

The maximum beam diameter is then computed as

dbeam = max(dbeam,x, dbeam,y) (4.80)

Finesse then computes an effective size of the grid as two times the smallest distance
from the optical center to the edge. Finesse issues a warning if the such computed grid
size is smaller than four times the maximum beam size.

The last line of the header defines a scaling factor to be applied to the data that follows.

This header is then followed by the grid data stored in columns and rows as given by the
‘Size’ in the header. The grid can contain four different kinds of information specified by
type of the map (see list above). Phase maps store information related to optical path
length, given in meters, amplitude related maps store power coefficients between 0 and
1. The grid data is then used inside Finesse to compute coupling coefficients as given
by Equation 4.78. Note that in all cases the Gaussian beam parameter used to compute
u(n′,m′) and u∗(n,m) are identical.

4.7.6 How to apply a map to a component

Applying a map to a component means you have one of the maps types discussed above
already at your disposal. Take the script snippet below, we have a mirror which we want
to apply one or several maps to, this is simply done using the map command.

90

4.7 Mirror surface maps

m m1 0.99 0.01 0 n2 n3

map command usage: map [component_name] [map_filename]

map m1 aperture_map.txt

map m1 surface_roughness_map.txt

map m1 reflectivity_map.txt

Above we have applied 3 maps to our mirror - the maximum is 30 though using that
many is unlikely - all three maps must have exactly the same physical sizes and discreti-
sations. In previous versions of Finesse each map would have a separate matrix computed
of coupling coefficients, which were later matrix multiplied together. This provides an
interesting problem as matrix multiplication is not commutative, so the result will differ
depending on the order in which the maps are specified in the kat file. To get around
this issue the maps are merged together to form one single merged-map. This is done
by representing the maps in complex exponential form and each of the maps multiplied
together. This merged-map is what is used to compute the coupling coefficients.

4.7.7 Accelerating calculations by saving coupling coefficients

The process of calculation the coupling coefficient integral can be incredibly slow by
nature. If you have a simulation which requires some coupling coefficients and you need
to run the simulation multiple times you can save the coupling coefficients to a file. This
is done using the knm command:

m m1 0.99 0.01 0 n2 n3

map m1 aperture_map.txt

map m1 reflectivity_map.txt

knm usage: knm [component_name] [filename_prefix]

knm m1 test1_m1

The above will save the coupling coefficients generated by the various maps you apply to
a file called test1_m1.knm. It will also save 4 other files which save the merged-map in
amplitude and phase components for reflection and transmission called .map files. It is
important that these 5 files be kept together if you want to reuse the cofficients.

The knm command not only saves the cofficients but also tells Finesse to load the files
aswell, the filename_prefix argument just needs to be the same as what you saved with,
without the filename extension .knm though.

Finesse will then try to load the 5 files. The conditions in which the saved coefficients
were calculated are stored in the .knm file. If the saved conditions are different to what
the simulation is now trying to run, the saved files will be ignored and a new set of co-
efficients will be generated and saved. In the .knm file you will also notice lines like
map0 : mymap_aperture.txt PWPU75F7XZIGxURwdEiJIA==, which list the maps that
have been applied to the mirror. The random looking string is infact a hash that is
uniquely generated to the contents of map file mymap_aperture.txt. If anything in that
file changes the calculation will be redone. Also it is important to note that reordering

91

Chapter 4 Higher-order spatial modes, the paraxial approximation

the maps in the kat file will also cause the computations to be recalculated. The hash is
an MD5 hash that when written to the files is stored using a BASE64 conversion.

The 5 files however are not hash protected, thus if you change the files by hand in a text
editor you can load the files using the knm command and the computation will be done
with any changes you have made - this functionality may change in later versions as of
0.99.9.

The integration routine can also be sped up by using the symmetric nature of the coupling
coefficient matrix in certain conditions. This is detailed further in appendix E.3. This
speeds up the computation by ≈ ×2 as only the upper half and diagonal elements of
the matrix need computing, the lower half can be inferred from the upper. This can
be switched on or off from the kat.ini file by using the option calc_knm_tranpose

0 (off) or 1 (on). This is switched on by default.

4.7.8 Coupling cofficient data files - ASCII vs binary formats

When using particularly large maps or a large maxtem value you will quickly find that
reading and writing the 5 map files becomes painfully slow. To combat this we added the
ability to save the files in either ASCII (Normal readable text) or binary (unreadable)
format. Changing which format is used is done using the conf command per component:

conf [component name] save_knm_binary [0 (ASCII) or 1 (Binary)]

If you try to load a binary or ASCII file when Finesse has been told to use the other, an
error will occur.

4.7.9 Integration and interpolation methods

The integral is performed numerically using an integrating library named Cuba or by a
simplistic Riemann sum. The Riemann sum works by summing over all grid elements,
the x, y coordinates used in the Hermite-Gauss functions unm are computed as follows:

x(i = 1 : cols) = (i− x0) ∗ xstep
y(j = 1 : rows) = (j − y0) ∗ ystep (4.81)

with cols, rows the number of columns and rows in the data grid, x0 and y0 the indices of
the optical center as given in the header and xstep, ystep the lengths of one grid element.
If a rotation angle is given in the map command, x and y are further rotated by minus the
given angle (If no angle is given and no angle has been found in the file, an angle of zero
degrees is assumed).

The Cuba integration routines are much more sophisticated in there approach in solving
the coupling coefficient integrals. Essentially the routines sample the mirror map in a
sparse fashion in an attempt to calculate the integral. The integration of the map is split
into several domains, each domain has the integral calculated and an error estimated,

92

4.7 Mirror surface maps

if the error is larger than the acceptable values the domain is further split and more
samples are used. This way the routines should concentrate on areas of difficulty with
more evaluations, whereas simple domains only require a few and are much more efficient.

As the routines sample the discretised map in a continuous manner, interpolation is
needed to sample within the maps data points. The interpolation is provided by the GSL
library and provides 3 options. The fastest method is Nearest-Neighbour, ideal if the
map is sampled highly or you just want a quick integration. Linear interpolation, and the
slowest, cubic interpolation is also offered. The choice of interpolation routine will depend
on what data your map has been generated from. If the underlying data was flat/linear
then linear interpolation would be ideal, however if original surface or data was smoothed,
like a mirror surface, cubic might give a better representation of the real surface. It is
important to remember that cubic interpolation can produce artefacts that may not exist
due to the polynomials it forces to fit the points of the map, which is problematic for
’rough’ maps. It is therefore recommended that you use linear interpolation for most
purposes. If you are using a binary map, i.e. a mask of 1’s and 0’s, you must use
nearest-neighbour to avoid varying values at points inbetween a 1 and 0.

There are several commands used to set the various integration and interpolation rou-
tines depending on your required use. First, you can specify the default integration and
interpolation methods in the ‘kat.ini’ file so as to apply to multiple kat files. This is done
by adding lines:

mapintmethod 1

mapinterpmethod 1

The various methods are chosen by a number 1, 2 or 3, for integration methods:

• Riemann Sum - 1
• Cuba Serial - 2
• Cuba Parallel -3

and for interpolation methods:

• Nearest Neighbour - 1
• Linear - 2
• Cubic -3

To set the default integration method for all components in a kat file you can use the
intmethod [integration_method] command in your Finesse input file.

You can also specify integration and interpolation on a component by component basis.
This is in the case where one map might have a rough surface which requires Cuba
integration but another very smooth and linear which could be done with a Riemann
sum. This is done using the conf (configure) command, for as example as shown below:

map m2 mymap_aperture.txt # Here we apply our map to the mirror

conf m2 interpolation_method 1 # This sets the interpolation to nearest neighbour

conf m2 integration_method 1 # This sets the integration method to the Riemann sum

93

Chapter 4 Higher-order spatial modes, the paraxial approximation

4.7.10 Map example: a focusing surface in transmission

This and the following example of using a map compare the results achieved with a
surface map to an equivalent Finesse result without a map. In this case we compare the
focussing of beam by a lens (the built-in Finesse command) to the focussing by a mirror
map representing the same focal length.

The transmission map representing a lens has been created using a set of SimTools func-
tions [SimTools], see Section 7.2.1, the MATLAB file is:

focallength = 200;

L1=10;

L2=150;

lambda = 1064e-9;

realsize = 0.7;

finesse_map_filename=’lens_map.txt’;

gridsize = 200;

map = FT_create_lens_map(gridsize,realsize,realsize,focallength);

FT_write_surface_map(finesse_map_filename,map);

To run a Finesse simulation using this map, the following input file can be used:

const L1 10

const L2 150

const f 200

l i1 1 0 n1

gauss g1 i1 n1 1e-2 0

s s1 $L1 n1 n2

m m1 0 1 0 n2 n3

s s2 $L2 n3 n4

% load map file

map m1 lens_map.txt

% coefficients should be saved in files named ’lens_test.*’

knm m1 lens_test

% coefficients should be saved in binary format

conf m1 save_knm_binary 1

% integration method: Cuba serial

conf m1 integration_method 2

% interpolation method: linear

conf m1 interpolation_method 2

% change of Gaussian parameters computed in: map

conf m1 knm_change_q 2

% we explicitly set the beam parameter at the second

% node of the mirror to match the focussed beam, so that

% all the power should remain in the 00 mode

94

4.7 Mirror surface maps

gauss g2 m1 n3 5.6961815m -138.35168

beam b1 n4

xaxis b1 x lin -1 1 50

trace 8

maxtem 2

phase 2

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

x/w
0

In
te

ns
ity

 I/
I 0

finesse lens
finesse map
fft

Figure 4.3: Beam shape comparison between setup with a lens component and a mirror
surface map representing the same focal length. Also shown is a result from an FFT
propagation code using the same transmission map

To check this result we can run a different file which uses a lens component instead of
the mirror with the surface map:

const L1 10

const L2 150

const f 200

l i1 1 0 n1

gauss g1 i1 n1 1e-2 0

s s1 $L1 n1 n2

lens l1 $f n2 n3

s s2 $L2 n3 n4

gauss g2 l1 n3 5.6961815m -138.35168

beam b1 n4

95

Chapter 4 Higher-order spatial modes, the paraxial approximation

xaxis b1 x lin -1 1 50

trace 8

maxtem 2

phase 2

Both results are shown in figure 4.3.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x position [w0]

a
m

p
lit

u
d
e
 [
a
.u

.]

FINESSE, Bayer−Helms

FINESSE, map

FFT

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−150

−100

−50

0

50

100

150

x position [w0]

ph
as

e
[d

eg
]

FINESSE, Bayer−Helms
FINESSE, map
FFT

Figure 4.4: Comparison of different simulations of the light reflected by a tilted mirror:
a TEM00 mode is reflected by a mirror which is tilted by 1µrad around the vertical
axis. In order to highlight the effect of the tilt the TEM00 part of the reflected beam
is removed so that only the TEM10 part remains. The above plots show a very good
agreement between an FFT propagation with Finesse results for using a mirror map
or the built-in xbeta command.

4.7.11 Surface map example: a tilted mirror in reflection

Another simple example is the tilted mirror: a beam in a TEM00 mode is reflected by a
mirror. This mirror can be tilted, either using the xbeta command or by applying a tilted
phase map to the mirror. The results are for both types of simulation and an equivalent
FFT propagation are shown in Figure 4.4. In order to highlight the effect of the tilt, the
TEM00 part of the beam has been removed so that only the TEM10 field shows. Both
the amplitude and the phase distribution match precisely for all three methods.

The MATLAB script to generate the tile map is again based on SimTools and look as
follows:

gridsize = 256;

% Full map radius and physical size of grid

R = 10;

realsize = 0.15;

% Tilt of 1urad along x-axis

xbeta = 1e-6;

ybeta = 0;

% Write tilt map

96

4.7 Mirror surface maps

map = FT_create_tilted_map(xbeta,ybeta,R,realsize,gridsize);

FT_write_surface_map(’tilted_map.txt’,map)

The Finesse input file is:

l i1 1 0 n1

gauss g1 i1 n1 20.3666m -10

s s1 10 n1 n2

m m1 0.99 0.01 0 n2 n3

map m1 tilted_map.txt

knm m1 tilt_test

conf m1 save_knm_binary 1

conf m1 integration_method 3

conf m1 interpolation_method 2

beam b1 0 n2

mask b1 0 0 0

maxtem 8

phase 2

xaxis b1 x lin -2 2 100

yaxis abs:deg

4.7.12 Realistic map example: thermal distortions

A more complicated example and one which takes care to simulate correctly is a cavity
including thermal distortions of the mirrors. The high circulating powers in advanced
gravitational wave detectors will lead to relatively large distortions of the mirrors making
up the arm cavities. Simulation of such a setup requires careful calculation and prepa-
ration of the mirror maps describing the thermal distortions, taking care to remove any
curvature and offset present in the mirrors and only including such effects in the Finesse
file. Simulations such as these are crucial for the commissioning of second generation
gravitational wave detectors and, as such, are a good test of Finesse as a robust and
useful tool. An investigation into the round-trip losses incurred in a cavity with ther-
mal distortions is described in section C, where we show that the correct result can be
achieved with a high enough maxtem.

97

Chapter 4 Higher-order spatial modes, the paraxial approximation

4.7.13 Couling coefficients for multiple effects

The separate computation of coupling coefficients of different effects at the same surface
requires some care in setting up the model, in particular one must take care configuring
the Gaussian beam parameters correctly.

Order of calculation

Finesse can compute three different sets of coupling coefficients:

• analytic coefficients using the Bayer-Helms (BH) equations, which includes the ef-
fects from all parameters set with the attr command, such as misalignment and
curvature.
• coefficients for mirror maps, computed through numerical integration
• coefficients for apertures, computed using numerical integration

In principle the order in which these are computed should not matter, however, with
a finite number of modes the merging of these coefficients remains an approximation,
and thus the order in which the coefficient matrices are merged can change the result.
The magnitude of this change might serve as an indicator of the overall error due to the
approximation of this approach. See appendix E for more mathematical details on the
separation of the coupling coefficients.

The setup of a Finesse model requires care only if a mirror map contains a residual cur-
vature or astigmatism. The beam tracing algorithm in Finesse does not know about the
maps and thus choses sub-optimal beam parameters. Therefore we strongly recommend
to remove any curvature and astigmatism from a map (using SimTools, see Section 7.2.1)
and apply these instead using the attr command.

However, there might be special cases in which a curvature cannot be removed from a
map. In this case we need to understand how Finesse separates the coupling coefficient
calculation into multiple matrices to speed up the calculation of static and dynamic ef-
fects, e.g. surface maps and tilts using the xbeta attribute (See appendix E). The coupling
coefficient that includes both the effects of the surface map calculated by numerical inte-
gration and misalignments and mode-mismatches analytically with Bayer-Helms can be
broken down into a matrix multiplication. Matrix KA and KB can represent either the
results of numerical integration or Bayer-Helms. Here N and M represent the incoming
and outgoing mode n′m′ and nm,

KNM = [KAKB]NM (4.82)

=

∞∑
L

〈
UN (q′1)A(x, y), UL(qL)

〉︸ ︷︷ ︸
A Solver

〈UL(qL), B∗(x, y)UM (q2)〉︸ ︷︷ ︸
B Solver

. (4.83)

The decision which needs to be made is what the value of qL is. Reasonable choices are the
incoming beam parameter q′1 and the outgoing beam parameter q2. qL should be chosen
so that the solver that contains the mode-mismatch (whether that be a curved map or

98

4.7 Mirror surface maps

Bayer-Helms with attr) has the incoming and outgoing q values in its inner product.
This can be set using the conf command

conf [component name] knm_change_q [1 (for q’_1) or 2 (for q_2)]

To choose whether KA or KB represents the map integration or Bayer-Helms solver we
use the command

conf [component name] knm_order [21 (K_A = Map, K_B = Bayer-Helms) or 12]

The default values are

knm_change_q 1

knm_order 21

The ordering is not overly important, from testing we have found the differences are minor
as the number of modes is increased. However for ppm level or computation it might be of
interest to swap the ordering to see if any commutation errors exist between the matrices.
Depending on the order the different solvers will see different q values depending on the
choice of qL.

Choice of Gaussian beam parameter for multiple effects

If we repeat the example shown in Section 4.7.10 using a non-optimal configuration for
the Gaussian beam parameters that are used by the numerical integration routine, we
get a substantially different result. The Finesse input file is:

const L1 10

const L2 150

const f 200

l i1 1 0 n1

gauss g1 i1 n1 1e-2 0

s s1 $L1 n1 n2

m m1 0 1 0 n2 n3

s s2 $L2 n3 n4

map m1 lens_map.txt

knm m1 lens_test

conf m1 save_knm_binary 1

conf m1 integration_method 2

conf m1 interpolation_method 2

conf m1 knm_change_q 1

gauss g2 m1 n3 5.6961815m -138.35168

maxtem 2

phase 2

beam b1 n4

99

Chapter 4 Higher-order spatial modes, the paraxial approximation

xaxis b1 x lin -1 1 50

This is the same as before except for the line

conf m1 knm_change_q 1

The results are shown in Figure 4.5. Whereas the previous example gave correct re-
sults already at maxtem 2, in this example the correct result can only be achieved using
maxtem>20! The reason for this is the mode mismatch at the lens, created by using
an non-optimal selection of Gaussian parameters: The mirror map acting as a lens will
transform the beam such that it the outgoing fundamental mode is described by a dif-
ferent Gaussian parameters than the incoming beam. By setting conf m1 knm_change_q

1 however, the map coefficient calculation is forced to use the beam parameter of the
incoming beam also for the outgoing field. The difference is substantial, the appropriate
waist size for the outgoing beam would be w0 = 5.6961815 mm but here the coefficients
are computed based on w0 = 10 mm. In Section 4.9 we discuss the limits of the paraxial
approximation on which the Finesse algorithms are based, which includes the statement
that the beam waist sizes should not differ by more than a factor of 3. While this example
is therefore still within the limit of the paraxial approximation, it requires a relatively
high number of modes to compute correct results.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

x/w
0

In
te

ns
ity

 I/
I 0

lens, maxtem 2
maxtem 0
maxtem 6
maxtem 10
maxtem 14
maxtem 18
maxtem 22
maxtem 26

Figure 4.5: Beam shape comparison between setup with a lens component and a mirror
surface map representing the same focal length. The solid black trace shows the correct
result obtained with the lens command. The other traces show the results for a mirror
map for different maxtem, using a non-optimal configuration for the Gaussian beam
parameter. Compare this to Figure 4.3, which uses a better configuration.

100

4.8 Detection of Hermite-Gauss modes

You must make sure that if a map changes the beam parameter (i.e. it represents a
curved surface), this beam parameter change is reflected in the Gaussian beam param-
eters provided to the integration routine computing the coupling coefficient; the conf

knm_change_q command can be used for this purpose. However, we recommend to pre-
condition maps such that all curvature are removed and are instead entered in the model
via the radius of curvature parameters of the mirror element. By default this will create
correct results with the least number of modes.

4.8 Detection of Hermite-Gauss modes

The Hermite-Gauss modes affect all detector types. The following sections describe the
changes with respect to the plane-wave mode.

4.8.1 Amplitude detectors

The amplitude detectors in the Hermite-Gauss mode can be specified as

ad name n m f node

with n and m as the mode indices. Such a detector will plot the complex amplitude of
each field with frequency f and mode indices n,m.

If the amplitude detector is used without specifying n and m, the detector tries to measure
something like the phase front on the optical axis. To do so it computes the average of
the powers in all modes at frequency f and computes the phase of the sum of these fields.
The result can be written as follows:

S = a exp (i Φ), (4.84)

where

a =

√∑
n,m

|an,m|2, (4.85)

Φ = phase

(∑
n,m

an,m

)
. (4.86)

This feature has been tested to give similar values as a FFT propagation code on the
optical axis. However, this feature should be considered as experimental.

4.8.2 Photodetectors

Since the Hermite-Gauss modes (as they are used here) are orthonormal, the photocur-
rent upon detection on a single-element photodiode (for simplicity shown here for one

101

Chapter 4 Higher-order spatial modes, the paraxial approximation

frequency component only) is proportional to:

S =
∑
n,m

anma
∗
nm. (4.87)

(as usual the fields referring to sidebands created by fsig commands are ignored for the
computation of the light power).

More interesting for the Hermite-Gauss modes are different detector types that are sen-
sitive to the shape of the beam, for instance: split photodetectors. Finesse can be used
with such detectors of arbitrary design by defining the beat coefficients. For an arbitrary
split detector the photocurrent is computed as:

S =
∑
n,m

∑
n′,m′

bnmn′m′anma
∗
n′m′ , (4.88)

where b is the beat coefficient matrix. The beat coefficients in the equation 4.88 can be
specified by the user through the pdtype command and the corresponding definition in
the ‘kat.ini’ file. The subsequent demodulation of the signal is performed exactly as in
plane-wave mode. In the following section we show an exemplary calculation of these
coefficients for a split photodetector.

4.8.3 Split photodetector

A split photodetector is defined as a infinitely large plane perpendicular to the beam
axis, split into two halves along one axis. The output signal is computed as the difference
between the signals generated from each of the two sides. Here we consider the x-split
photodetector, which is divided along the y-axis. To compute the coefficients bnmn′m′

we assume a beam consisting of two different Hermite-Gauss modes is impinging on the
detector. The separability of Hermite-Gauss modes in x and y allows us to separate the
beat coefficients:

bnmn′m′ = bnn′bmm′ . (4.89)

For a detector split in the x-direction it is straightforward to find the beat coefficient
factor cmm′ corresponding to the the vertical mode indices. The orthonormality of the
Hermite-Gauss functions means that:

bmm′ =

{
1 when m = m′,
0 when m 6= m′,

(4.90)

leading to a simplification of the full beat coefficients:

bnmn′m′ =

{
bnn′ when m = m′,
0 when m 6= m′.

(4.91)

102

4.8 Detection of Hermite-Gauss modes

The problem is now reduced to finding bnn′ , and as a result it is only necessary to consider
the fields in the x-direction. The impinging field can now be written in one dimension
as:

E(x) = anun(x) + an′un′(x). (4.92)

The intensity becomes

I(x) = |E|2 = anuna
∗
n′u
∗
n′ + a∗nu

∗
nan′un′ + |anun|2 + |an′un′ |2 = I1 + I0 (4.93)

with I0 = |anun|2 + |an′un′ |2.

The signal of the x-split detector is given by:

S =

∫ ∞
0

dxI(x)−
∫ 0

−∞
dxI(x) =

∫ ∞
0

dxI(x) +

∫ −∞
0

dxI(x) (4.94)

=

∫ ∞
0

dxI(x) +

∫ −∞
0

dxI(x) =

∫ ∞
0

dxI1(x)−
∫ ∞

0
dxI1(−x). (4.95)

The I0 contributions are cancelled from the signal because I0(−x) = I0(x). Now we want
to have a closer look at I1. First we can show that unu

∗
n′ is a real number. From equation

4.11 we get:

unu
∗
n′ =

√
2

π

√
1

2n+n′n!n′!w2
ei (n−n′)ΨHn

(√
2x

w

)
Hn′

(√
2x

w

)
e−

2x2

w2 . (4.96)

However in Finesse the Gouy phase is stored in the field amplitudes an, so that with
that in mind we calculate the following:

fnn′ = (unu
∗
n′)|no Gouy phase =

√
2

π

√
1

2n+n′n!n′!w2
Hn

(√
2x

w

)
Hn′

(√
2x

w

)
e−

2x2

w2 (4.97)

which is a real number. Thus we can write:

I1 = anuna
∗
n′u
∗
n′ + a∗nu

∗
nan′un′ = (ana

∗
n′ + a∗nan′) fnn′ (4.98)

and the split detector signal becomes

S = (ana
∗
n′ + a∗nan′)

(∫ ∞
0

dxfnn′(x)−
∫ ∞

0
dxfnn′(−x)

)
= (ana

∗
n′ + a∗nan′) bnn′ . (4.99)

From the definition of the Hermite polynomials in Appendix F.1 we can conclude that
fnn′ is an odd function when n + n′ is odd and an even function when n + n′ is even.
Thus we get

bnn′ =

{
0 for n+ n′ even,
2
∫∞

0 dxfnn′(x) for n+ n′ odd.
(4.100)

103

Chapter 4 Higher-order spatial modes, the paraxial approximation

Next we would like to find an analytical solution for the integral
∫∞

0 dxfnn′(x).∫ ∞
0

dx fnn′(x) =

∫ ∞
0

dx

√
2

π

√
1

2n+n′n!n′!w2
Hn

(√
2x

w

)
Hn′

(√
2x

w

)
e−

2x2

w2

(4.101)

=

√
2

π

√
1

2n+n′n!n′!w2

∫ ∞
0

dxHn

(√
2x

w

)
Hn′

(√
2x

w

)
e−

2x2

w2

(4.102)

=

√
2

π

√
1

2n+n′n!n′!w2
B1 (4.103)

The integral B1 can be simplified by applying a variable substitution:

v =

√
2x

w
(4.104)

and we obtain:

B1 =
w√
2

∫ ∞
0

dv Hn (v)Hn′ (v) e−v
2
. (4.105)

To solve this we require the following two useful identities. For n being an odd number
we get:∫ ∞

0
dxxne−x

2
=

1

2

(
n− 1

2

)
! (4.106)

A Hermite polynomial can be written [Abramowitz] as:

Hn(x) = n!

[n2]∑
l=0

(−1)l
1

l!(n− 2l)!
(2x)n−2l (4.107)

with [n
2

]
=

{
n
2 for n even,
n−1

2 for n odd.
(4.108)

We require n + n′ to be odd, thus only n or n′ can be odd. Assuming n to be even and
n′ to be odd we can write:

B1 =
w√
2

∫ ∞
0

duHn (u)H ′n (u) e−u
2

(4.109)

=
w√
2
n!n′!

n/2∑
l

(n′−1)/2∑
l′

(−1)l(−1)l
′ 1

l!(n− 2l)!

1

l′!(n′ − 2l′)!
2n−2l2n

′−2l′ (4.110)

·
∫ ∞

0
dxxn+n′−2l−2l′e−x

2
(4.111)

104

4.8 Detection of Hermite-Gauss modes

Knowing that (n + n′ − 2l − 2l′) is an odd number we can replace the integral with the
following:∫ ∞

0
dxxn+n′−2l−2l′e−x

2
=

1

2

(
n+ n′ − 1

2
− l − l′

)
! (4.112)

and thus we obtain:

B1 =
w√
2
n!n′!2n+n′−1

n/2∑
l

(n′−1)/2∑
l′

(−1)l+l
′
2−2l−2l′

(
n+n′−1

2 − l − l′
)

!

l!l′!(n− 2l)!(n′ − 2l′)!
(4.113)

and as our final result:

bnn′ =2

√
2

π

√
1

2n+n′n!n′!w2
B1 (4.114)

=

√
2n+n′n!n′!

π

n/2∑
l

(n′−1)/2∑
l′

(
−1

4

)l+l′ (
n+n′−1

2 − l − l′
)

!

l!l′!(n− 2l)!(n′ − 2l′)!
. (4.115)

By using split detectors in Finesse, one may calculate the control signals for automatic
alignment systems or other similar geometrical control systems.

The kat.ini file distributed with Finesse contains the beat coefficients as described
above for modes up to maxtem 40. These coefficients have been created using a SimTools
script.

4.8.4 Beam detectors

The beam detector has two modes. If the command is used without specifying a frequency
it acts like a CCD camera, it plots the beam intensity as a function of the x and y
coordinate perpendicular to the optical axis. The output is a real number computed as:

s(x, y) =
∑
ij

∑
nm

unm(x, y)u∗nm(x, y)ainma
∗
jnm with {i, j | i, j ∈ {0, . . . , N} ∧ ωi = ωj}.

(4.116)

If instead a frequency is specified the beam detector resembles an amplitude detector,
it outputs the amplitude and the phase of a the light field at the given frequency as a
function of the x and y coordinate. The light field at frequency ωi is given by a complex
number (z), and is calculated as follows:

z(x, y) =
∑
j

∑
nm

unm(x, y)ajnm with {j | j ∈ {0, . . . , N} ∧ ωj = ωi}. (4.117)

105

Chapter 4 Higher-order spatial modes, the paraxial approximation

4.9 Limits to the paraxial approximation

The decomposition of a laser beam into a set of Hermite-Gauss modes is merely an
approximation. Also, the coupling coefficients as given in [Bayer-Helms] are derived using
additional approximations. In order to obtain sensible results one has to understand the
limits of these approximations. From references given within [Bayer-Helms] the following
simple criteria can be determined. The paraxial approximation can be understood as a
first order approximation in the parameter κ with:

κ =

(
w0

2zR

)2

=

(
λ

2πw0

)2

. (4.118)

In general we can assume that the approximation is valid for κ� 1 and the error will be
of the order of κ2. In the case of coupling one beam into another, the two characteristic
parameters should be of the same order of magnitude.

In order to calculate some limits the above criteria are translated into:

• κ < 0.1
• 0.1 < κ1/κ2 < 10

From the limit on κ one can directly derive that the divergence angle of the beam should
be approximately less than 35◦, which corresponds to limits computed in [Siegman]. From
the limit on the relative difference of κ1 and κ2 one can derive that the waist size of the
two beams should not differ by more than a factor of

√
10. Also assuming that the beam

size should never exceed these limits, we can calculate that the waist position should not
differ by more than three times the (smaller) Rayleigh range.

In conclusion, we believe that the following criteria can be used as a rough guide to judge
whether the computation stays within the limits of the relevant approximations:

• the diffraction angle of every beam should be less than 30◦;
• any misalignment between two beams should not be larger than their diffraction

angles;
• the waist sizes of the beams should not differ by more than a factor of three;
• the distance between the waist positions of the beams should be smaller than three

times the Rayleigh ranges;

Please note that the above limits do not imply that correct results can be reached by
using a reasonable number of modes. In practice, much stronger limits have to be applied
to reach acceptable computation times; see below.

In summary, for a perfectly aligned and mode-matched interferometer the results will
be correct. Both misalignment and mode mismatch (or not optimally chosen Gaussian
beam parameters) result in light being transferred into higher-order modes. In general,
the number of modes that have to be taken into account depends on the amount of the
misalignment or the amount of mode mismatch.

106

4.10 Mode mismatch in practice when using Finesse

4.10 Mode mismatch in practice when using Finesse

Mode matching effects can complicate any simulation of interferometer layouts using
higher order modes. A mode mismatch in this context refers to any interference between
two beams which are best given in separate base systems, i.e. parameters beam waist size
and beam waist position associated with the two beams differ. Thus, on interference and
probably for the resulting beam no optimum base system can be defined. Consequently
the phase information of the beam is spread of a number of transversal modes. Mathemat-
ically this does not pose a problem, as long as a sufficiently large number of higher modes
are used to describe the beam. However, in practice the definition of operating points
becomes much more difficult. And much more care is required to assure the simulation
is set up correctly. The following sections illustrate the problem with some examples and
give some advice on how to use Finesse in the presence of mode mismatching.

4.10.1 Phases and operating points

On operating point can be defined as the microscopic positions of the interferometer
optics. More precisely it is given by the phases of light fields at the location (optical
surface) of interference.

In Finesse (and many other numeric simulations) the parameters accessible by the user
include the microscopic positions of optical surfaces but not the phases of light fields.
The latter describe an output of the simulation rather than an input. Thus it is up to
the user to define the microscopic position of optical surfaces such that the light fields
feature the correct phase upon interference.

Finesse tries to ease this task by several measures, some of which are optional. The
following features reflect design choices which apply to both modes (plane wave and
Hermite-Gauss):

• The length of space components is defined as a inter multiple of the default wave-
length λ. Without Hermite-Gauss modes, i.e. when the Gouy phase is not consid-
ered, this ensures that a space is ’resonant’ to the carrier field, i.e the phase of the
field leaving the space is the same as on entering it.
• Microscopic positions are given as tunings which provides an intuitive user input as

often operating points can be set with tunings of 0, 45 or 90 degrees.

In the Hermite-Gauss mode the following two simplifications can be used:

• The cav command and the automatic beam trace routine allows to use cavity eigen-
modes wherever possible.
• The phase command can be used to zero the Gouy of the TEM00 mode and of the

coupling coefficients for the TEM00 mode, see below.

And most importantly the lock command provides the means to reach the operating
point accurately when the operating point cannot easily be set by the user manually.

107

Chapter 4 Higher-order spatial modes, the paraxial approximation

10-3

10-1

101

103

-10 -5 0 5 10 15 20 25 30

Li
gh

t p
ow

er
 [W

]

Cavity tuning (m2 phi) [deg]

phase 0
phase 1
phase 2
phase 3

10-3

10-1

101

103

-10 -5 0 5 10 15 20 25 30

Li
gh

t p
ow

er
 [W

]

Cavity tuning (m2 phi) [deg]

cav + phase 0
cav + phase 1
cav + phase 2
cav + phase 3

Figure 4.6: The light power in the cavity while one mirror in tuned around the cavity
resonance. The left plot was created not using the cav command whereas the right plot
shows the results obtained using cav and thus the cavity’s eigenmodes. The different
simplifications set by the phase command change the mirror tuning at which resonance
is achieved. The respective offset values are listed in Table 4.1.

4.10.2 The phase command and its effects

The phase command can be used to switch on/off some simplification with respect to the
phase of the light field. The syntax is as follows:

• phase 0: No simplification. This means for example that the Gouy phase of a
TEM00 is not zero and thus a space of arbitrary length is in general not resonant
to the carrier field
• phase 1: The phase of coupling coefficients is shifted so that the phase of k00 is

0. The phases of all coupling coefficients knm for one field coupling, for example,
a reflection at one side of a mirror, are changed by the same amount. To some
effect that resembles the movement of the optical surface. However, since this is
independently applied to all coupling coefficients of the surface (e.g. two reflections
and two transmissions), this does not describe a possible real situation. In fact, it
might validate energy conservation or produce other weird effects.
• phase 2: The phase accumulated in a ’space’ components is adjusted to that the

phase of TEM00 set to 0. This simply removed the effect from the Gouy phase on
the ’resonance’ of the space components, i.e. the length of a space is made to be
not anymore a integer multiple of the wavelength in order to produce the desired
effect of ’resonance’ for the TEM00 mode.
• phase 3: Both of the above (1+2)

Currently the default setting in Finesse is phase 3. The motivation for this has been
to provide the beginner with default settings that yield intuitive results straight away.
Experienced users should check whether they can develop the habit of using phase 2

108

4.10 Mode mismatch in practice when using Finesse

instead which can be a bit laborious to use but always produces physically correct results.

phase 0 1 2 3 0 1 2 3
cav no no no no yes yes yes yes

offset 18.4 22.3 -4.2 -0.4 18.4 18.4 0.0 0.0

Table 4.1: Tuning offsets for different use of the cav and phase command. The numbers
shown here correspond to the graphs in Figure 4.6.

The effects of the phase command on the operating point of a simple Fabry-Perot cavity
is shown in Figure 4.6. In this and the following examples the cavity parameters are set to:

cavity length Rc m1 Rc m2 T m1 L m1 T m2 L m2

3995 m -2076 m 2076 m 5e−3 4.5e−6 10e−6 50e−6

With m1 being the input mirror and m2 the end mirror of the cavity. These parameters
represent a cavity similar to a LIGO/AdLIGO arm cavity.

Figure 4.6 shows that the operating point is strongly dependent on the use of the phase

and cav commands. The offsets represented as tunings of the end mirror are listed in
Table 4.1. The numbers present the tuning which need to be set by the user to set the
cavity on resoance (assuming a tuning of 0 degrees for the input mirror).

Figure 4.7 demonstrates another curious effect of the phase command. In the case of
a simple two mirror cavity one can show that phase 3 and phase 1 can violate energy
conservation. In this example the input beam is not mode-matched to the cavity, the cal-
culation is performed using cavity eigenmodes and the operating point has been adjusted
manually. Even though the effect is small and would probably not be noticeable in many
simulation results, it shows that the phase command must be used with care.

In summary, a simple intuitive number to be set manually by the user can only be
achieved when using eigenmodes and phase 2/3 (it should be noted that in the presence
of a mode mismatch at a beam splitter only phase 3 will provide an intuitive tuning for
the operating point). However, physically correct results are only guaranteed with phase

2/0.

4.10.3 Mode mismatch effects on the cavity phase

In high-finesse cavities a small change of the light phase can quickly detune the cavity.
For example, a mathematical mode-mismatch inside the cavity, which occurs when the
beam parameters used in the calculation are not exactly equal those of the circulating
beam, can easily lead to wrong results and has to be treated with care.

Figure 4.8 shows the power inside a linear cavity as a function of the radii of curvature of
the cavity mirrors (the cavity is symmetric). The importance of using cavity eigenmodes
is demonstrated by the fact that the correct results (in this example) are only achieved
by either using many higher-order modes, preferably with a lock command, or by using

109

Chapter 4 Higher-order spatial modes, the paraxial approximation

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

-1 -0.5 0 0.5 1

C
irc

ul
at

in
g

lig
ht

 p
ow

er
 [W

]

Cavity end mirror detuning [deg]

phase 3
phase 2
phase 1
phase 0

 0.85

 0.9

 0.95

 1

 1.05

 1.1

-1 -0.5 0 0.5 1

R
ef

le
ct

ed
 li

gh
t p

ow
er

 [W
]

Cavity end mirror detuning [deg]

phase 3
phase 2
phase 1
phase 0

Figure 4.7: The two plots show the circulating power (left) and the reflected power
(right) of a Fabry-Perot cavity for different phase settings. The input power is set
to 1 W. The two phase settings which reset the phase of the coupling coefficients (
phase 3 and phase 1) can ‘create’ energy as the reflected light can be larger than
the injected light. This illustrates that they can produce non-physical results whereas
phase 2 and phase 0 do not show this problem. In these examples the cavity is set to
use eigenmodes and the operating point has been adjusted manually. The input beam
is not matched to the cavity modes and maxtem 2 has been used. Please note, the
parameters of Table 4.1 were not used to generate these plots, arbitrary parameters
have been chosen instead to demonstrate the effect.

the cavity eigenmodes. Note that in this case the results do not depend on the setting of
the phase command.

110

4.10 Mode mismatch in practice when using Finesse

 600

 650

 700

 750

 800

 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105

Li
gh

t p
ow

er
 [W

]

Radius of curvature of cavity mirrors [m]

a) unlocked, no cavity eigenmodes

maxtem 0
maxtem 2
maxtem 4
maxtem 6

 600

 650

 700

 750

 800

 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105

Li
gh

t p
ow

er
 [W

]

Radius of curvature of cavity mirrors [m]

b) locked, no cavity eigenmodes

maxtem 0
maxtem 2
maxtem 4
maxtem 6

 600

 650

 700

 750

 800

 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105

Li
gh

t p
ow

er
 [W

]

Radius of curvature of cavity mirrors [m]

c) cavity eigenmodes (locked/unlocked)

maxtem 0
maxtem 2
maxtem 4
maxtem 6

Figure 4.8: The three graphs compare the cavity power as a function of the radii of
curvature of the cavity mirrors (the radii of curvature are changes symmetrically, i.e.
Rc1 = −Rc2). The results do not change for different usage of the phase command. The
input beam has been set to be matched to the eigenmodes of the cavity for Rc = 2076 m.
Graph a) shows the situation when the cav command is not used and thus the system
in analysed with a non-opimal base. A very rapid drop of the cavity power can be
observed when the radius of curvature deviates from 2076 m. This is due to a change in
the operating point of the cavity. This can be easily shown by redoing the simulation
using a lock command to keep the cavity on resonance, as shown in graph b). In
this case, using the cavity eigenmodes produces always the correct result without the
need for using a lock or higher order modes, as shown in graph c). Of course a mode
mismatch at a beam splitter does not have a proper base system like a single cavity.
In that case a lock is often the only way to ensure correct results.

111

Chapter 4 Higher-order spatial modes, the paraxial approximation

4.11 Misalignment angles at a beam splitter

The coupling of Hermite-Gauss modes in a misaligned setup as described above is defined
by a misalignment angle. However, in the case of a beam splitter under arbitrary incidence
the analysis of the geometry is complicated because it is commonly described in three
different coordinate systems. The purpose of this section is to derive a precise description
of the problem. Finesse uses an approximation and the calculations below can be used
to estimate the (very small) error of that approach.

Our discussion will be limited to the following setup: a beam travelling along the z-axis
(towards positive numbers) and a beam splitter (surface) located at z = 0, which may
be rotated around the y-axis by an angle α (|α| = angle of incidence). This shall be the
‘aligned’ setup.

To describe a misalignment of the beam splitter, one usually refers to a coordinate system
attached to the beam splitter. This coordinate system is called (x′, y′, z′) in the following
and can be derived—in this case—by rotating the initial coordinate system by α around
the y-axis. The misalignment can be quantified by two angles βx, βy that describe the
rotation of the beam splitter around the x′-axis and the y′-axis, respectively. Rotation
around the x′-axis is often called tilt, and rotation around the y′-axis simply rotation.
Whereas the initial rotation α may be large, the misalignment angles βx and βy are usually
small. In fact, most models describing the effects of misalignment use approximations for
small perturbations.

Here we are interested in the exact direction of the reflected beam. The reflected beam,
though, may be characterised in yet another coordinate system (x′′, y′′, z′′) with the z′′-
axis being parallel to the reflected beam. This coordinate system can be derived from
(x, y, z) by a rotation of 2α around the y-axis. A misalignment of the beam splitter will
cause the beam to also be misaligned. The misalignment of the beam is given by the two
angles γx, γy that describe the rotation around the x′′-axis and the y′′-axis, respectively.

It can easily be shown that for βx = 0, the misalignment of the beam is γx = 0 and
γy = 2βy. For normal incidence (α = 0) we get a similar result for βy = 0: γy = 0 and
γx = 2βx. For arbitrary incidence, the geometry is more complex. In order to compute
the effect caused by a tilt of the beam splitter we need basic vector algebra. Please note
that the following vectors are given in the initial coordinate system (x, y, z). First, we
have to compute the unit vector of the beam splitter surface ~ebs. This vector is rooted
at (0,0,0), perpendicular to the surface of the beam splitter and pointing towards the
negative z-axis for α = 0.

For α = 0 this vector is ~ebs = −~ez. Turning the beam splitter around the y-axis gives:

~ebs = (sin(α), 0,− cos(α)) . (4.119)

Next, the beam splitter is tilted by the angle βx around the x′-axis. Thus, the surface
vector becomes:

~ebs = (sin(α) cosβx,− sin(βx),− cos(α) cosβx) . (4.120)

112

4.11 Misalignment angles at a beam splitter

In order to calculate the unit vector parallel to the reflected beam, we have to ‘mirror’
the unit vector parallel to the incoming beam −~ez at the unit vector perpendicular to the
beam splitter. As an intermediate step, we compute the projection of −~ez onto ~ebs (see
Figure 4.9):

~a = −(~ez · ~ebs) ~ebs = cos(βx) cos(α)~ebs. (4.121)

The reflected beam (~eout) is then computed as:

~eout = −~ez + 2(~a+ ~ez) = 2~a+ ~ez (4.122)

= (2 cos2(βx) cos(α) sin(α),−2 cos(βx) cos(α) sin(βx),−2 cos2(βx) cos2(α) + 1)

=: (xo, yo, zo).

e
ebs

out

z−e

a

Figure 4.9: Mirroring of vector −~ez at the unit vector of the beam splitter surface ~ebs.

To evaluate the change of direction of the outgoing beam caused by the tilt of the beam
splitter βx, we have to compare the general output vector ~eout with the output vector for
no tilt ~eout

∣∣
βx=0

. Indeed, we want to know two angles: the angle between the two vectors

in the x-z plane (γy), and the angle between ~eout and the x-z plane (γx). The latter is
simply:

sin(γx) = 2 cos(βx) cos(α) sin(βx) = cos(α) sin(2βx). (4.123)

For small misalignment angles (sin(βx) ≈ βx and sin(γx) ≈ γx), Equation 4.123 can be
simplified to:

γx ≈ 2βx cos(α). (4.124)

One can see that the beam is tilted less for an arbitrary angle of incidence than at normal
incidence. An angle of 45◦, which is quite common, yields γx =

√
2βx.

In order to calculate γy, we have to evaluate the following scalar product:

~eout

∣∣
yo=0
·~eout

∣∣
βx=0

=
√
x2
o + z2

o cos(γy),

⇒ cos(γy) = −1√
x2o+z

2
o

(xo sin(2α) + zo cos(2α)) .
(4.125)

113

Chapter 4 Higher-order spatial modes, the paraxial approximation

This shows that a pure tilt of the beam splitter also induces a rotation of the beam. The
amount is very small and proportional to β2

x. For example, with α = 45◦ and βx = 1 mrad,
the rotation of the beam is γy = 60 µrad. Figure 4.10 shows the angles γx and γy as
functions of α for βx = 1◦.

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90
 0

 0.005

 0.01

 0.015

 0.02

ga
m

m
a x

 [d
eg

]

ga
m

m
a y

 [d
eg

]

alpha [deg]

betax=1 deg betay=0 deg

gammax
gammay

Figure 4.10: Misalignment angles of a beam reflected by a beam splitter as functions of
the angle of incidence α. The beam splitter is misaligned by βx = 1◦ and βy = 0.
Note that the values for β are very large, see Section 4.9, and have been chosen to
artificially enlarge the coupling between vertical and horizontal misalignment for this
demonstration.

In the case of βx 6= 0 and βy 6= 0, the above analysis can be used by changing α to
α′ = α+ βy.

In Finesse the coupling between βx and βy is ignored. In other words, the effect shown
by the red (solid) trace in Figure 4.10 is included in Finesse whereas the effect illustrated
by the blue (dashed) trace is not.

4.12 Aperture effects and diffraction losses

By default Finesse assumes that all optical components have an infinite size transverse
to the optical axis, however you are can specify the radius of mirrors using the command:

attr mirror_name r_ap value

where value is the aperture radius in metres. It is also possible to vary the aperture
radius with the xaxis command by specifying a mirror and using the r_ap attribute.
The effect of an aperture is calculated using higher order modes, therefore when an
aperture is defined a coupling coefficient matrix is computed. This requires using the

114

4.12 Aperture effects and diffraction losses

1

10-1

10-2

10-3

10-4

10-5

10-6

10-7

 0 0.5 1 1.5 2 2.5 3

R
el

at
iv

e
po

w
er

 lo
ss

Mirror radius [x/w]

Figure 4.11: The plot shows a lower limit of the power loss experienced by a beam of
size w on reflection at a mirror of diameter 2x.

maxtem command to choose the maximum mode order to use in the calculations. Below
we see an example on how choosing maxtem value affects the power loss.

Note that currently it is only possible to calculate the coupling coefficients by computing
the integral from equation 4.78 numerically.

From the intensity profile given in Equation 4.4 we can compute the amount of power
with respect to a given area. The power inside a circular disk with the radius x (with the
centre on the optical axis) can be computed as:

Pdisk =
∫

disk I(r) =
∫ 2π

0 dφ
∫ x

0 dr rI(r)

= 4P
w

∫ x
0 dr re

−2r2/w2

= −P
∫ x

0 dr∂re
−2r2/w2

= −P
[
e−2r2/w2

]x
0

= P
(

1− e−2x2/w2
)
.

(4.126)

A beam that is reflected at a mirror with diameter 2x will thus experience a power loss
of at least:

Ploss = P e−2x2/w2
. (4.127)

This is almost the same distribution as the intensity itself. With respect to losses we
are interested in small deviations from P and look at the distribution in a different way.
Figure 4.11 shows the amount of power lost as a function of x/w (the mirror radius with
respect to the beam radius). In modern high finesse cavities where losses due to surface
and coating imperfections can be in the range of a few ppm, the mirror’s diameter should

115

Chapter 4 Higher-order spatial modes, the paraxial approximation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

r/w

P
re

f

Reflected power from mirror with aperture r and beam size w

maxtem=0
maxtem=2
maxtem=5
maxtem=10
Analytic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
−2

10
0

r/w

R
el

at
iv

e
er

ro
r

Relative error between computed reflected power
from apertured mirror and analytic

Figure 4.12: Shown in the top plot is the power reflected from an apertured mirror with
different maxtem options. Analytic refers to equation 4.126. The bottom plot shows
the difference between the maxtem results and the analytic result.

at least be 2.5 times the beam diameter. Typically mirrors are designed to be at least
three times the nominal beam diameter including a safety margin allowing for imperfect
alignment and some changes in the beam diameter.

This calculation is meant for deriving limits only. In general, the effects of apertures have
to be analysed taking into account the effects of diffraction and higher order modes.

Modelling a sharp aperture, such as a finite sized mirror, with modes or any paraxial
method, is not ideal. For example, representing a perfectly sharp cut-off would require
an infinite number of modes. It is therefore advisable to keep in mind the amount of
power that is lost due to the aperture and also the fact a finite number of modes are
used. Below a simple test was run that looked at the power reflected from a mirror, we
then vary the size of the aperture and plot the reflected power for increasing maxtem.

l i1 1 0 n1

s s1 1 n1 n2

m m1 1 0 0 n2 dump

pd0 Pref n2

116

4.12 Aperture effects and diffraction losses

200 400 600 800 1000 1200
0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

N, size of aperture map − NxN

R
ef

le
ct

ed
 P

ow
er

 [W
]

Normalised reflected power from apertured mirror. Map vs. r
ap

 vs Analytic. r/ω=2

maxtem=8
maxtem=6
maxtem=4
maxtem=2
maxtem=0
r
ap

 Attribute

Analytic

Figure 4.13: Here the performance of an aperture mirror map is tested against the ana-
lytic solution and using the rap attribute of the mirror. The rap attribute was computed
using maxtem 8. Here we can see a high resolution map is required to reach the same
levels of accuracy. Both do not reach the analytic value though.

gauss g1 m1 n2 1e-3 0

conf m1 knm_flags 8 # need this to force aperture integration

conf m1 integration_method 3 # use cuba parallel integrator

xaxis m1 Rap lin 1e-5 2e-3 40

can also be applied using attr for a single value

attr m1 Rap 1e-4

maxtem 5

The results are plotted in figure 4.12 which demonstrates that even using maxtem 20 is
not sufficient to fully represent the beam. Using such a high value for maxtem causes
the simulation computation to become very slow and it is not generally recommended;
a maxtem of 10 appears to offer a good level of accuracy and is still relatively quick
to compute in comparison. We can estimate the amount of extra power we are missing
compared to what the analytic equation predicts by using the bottom plot in figure 4.12.

It should also be noted that aperture effects can also be computed by using absorption
mirror maps, which have a resolution N × N with width and height of the map of 2rap
(Thus a circular aperture fits perfectly within the map). However as shown in Figures
4.13 and 4.14 the map must be of a high enough resolution to provide accurate results
at ppm levels, due to circlular aperture not being perfectly represented in a rectangular
grid. Using large maps also has computational performance issues whereas using the rap
attribute can be comparitviely quick to compute. Both rap and the maps are computed
using the same routines, the former however does so in a more efficient manner, thus we
recommend when possible using the rap attribute.

117

Chapter 4 Higher-order spatial modes, the paraxial approximation

200 400 600 800 1000 1200
150

200

250

300

350

400

450

500

N, size of aperture map − NxN

A
bs

ol
ut

e
er

ro
r

[p
pm

]

Aperture with map error with analytic, r/ω=2

200 400 600 800 1000 1200
2

3

4

5

6

7

N, size of aperture map − NxN

A
bs

ol
ut

e
er

ro
r

[p
pm

]

Aperture with map error with analytic, r/ω=2.5

maxtem=8
maxtem=6
maxtem=4
maxtem=2
maxtem=0
r
ap

 Attribute

Figure 4.14: The level of accuracy possible is limited by the ratio between the aperture
size r and the beam size ω. Unless a high resolution aperture map is used results differ
significantly. rap line is using maxtem 8.

118

Chapter 5

Radiation pressure

Interferometric gravitational wave detectors make use of suspension systems to decouple
mirrors from ground motion. Furthermore these interferometers operare with a very
high circulating light power so that the radiation pressure from the reflected photons
can significantly influence the mechanical behaviour of the mirrors. This leads to a very
interesting coupling between the optical fields and the mirrors as mechanical oscillators,
forming so-called optical springs. Optical springs and other radiation pressure effects
can change the dyanmics of an interferometer significantly, especially when considering
transfer functions from mechanical motions to optical outputs. The implementation of
radiation pressure effects in Finesse has been a long requested feature and is now available
with the release of Finesse 2.0.

5.0.1 Radiation pressure calculation approximations

It is important, as with any simulation tool, to understand the limits of the approxima-
tions made to allow radiation pressure effects to be implemented in Finesse. By nature
radiation pressure is proportional to the beam power, a non-linear relation in regards to
the amplitude of the optical fields which is what Finesse computes. To linearise the
the physical equations described in the following sections the following assumptions are
made::

• The magnitude of any motion in the mirrors surface is much smaller than the
wavelength of light, by default, 1064nm.
• Therefore the optical sidebands created by such motion are also much smaller in

magnitude than the magnitude of any carrier (laser or RF modulation) field.
• That the frequency difference between carrier fields, laser fields and RF sidebands

created with modulator components, are large in comparison to the frequencies of
signals and of mechanical resonances of optics. This is required so that any beating
between carriers fields does not cause significant radiation pressure effects.

It also follows that the maximum signal frequency must be less than half of the minimum
frequency difference between carrier fields. If this frequency limit is exceeded, it is possible
for the upper sidebands of one carrier field to become the lower sideband of another. This
is not a scenario that the radiation pressure implementation of Finesse is designed to
handle. Given that modulator frequencies are typically the order of MHz and radiation

119

Chapter 5 Radiation pressure

pressure effects are only of interest at low frequencies due to the mechanical susceptibilty
of a suspended object being ∝ 1/f2, this should not be an issue that comes up frequently.

5.1 Radiation pressure force to a mirror motion

Any electromagnetic field will exert a force on a suspended optic, the frequency spectrum
of such a force from one beam is given as,

F (f) =
P (f) cos(α)

c
. (5.1)

Where P (f) is the fluctuation of the power in the laser at frequency f , α is the angle of
incidence and c the speed of light. Finesse models only consider forces with f > 0, in
other words we assume that the DC radiation pressure force to be compensated for by
some control system that keep the mirror in the same position.

Any fluctuation in the light power at a given frequency fs (signal frequency) can be
described by a positive and negative part in the frequency domain,

P (fs) = P+
s e

i2πfst + P−s e
−i2πfst. (5.2)

As P+
s = P−∗s there is no need to explicitly solve P−s in any of our simulations. Instead we

only compute the positive frequency components. Assuming that all carrier fields possess
both an upper a+

s,jnm and lower a−s,jnm sideband of mode TEMnm and which belongs to

the jth carrier field, the fluctuating power is then given by,

P+
s =

∑
j

∑
n,m

(
a+
s,jnma

∗
c,jnm + a−∗s,jnmac,jnm

)
. (5.3)

It should be noted that this power fluctuation calculation depends on both the upper
sideband and the conjugate of the lower sideband – conjugation is not a linear operation
so cannot be represented in a matrix form of the equations. By choosing to model
only the positive frequencies we must now propagate the conjugate of the lower signal
sidebands in the interferometer matrices that we construct. Although internally this
requires constructing the matrices differently, any output from Finesse will always output
the non-conjugated lower sideband, such as if you use the ad detectors.

The total force applied to a suspended mirror is then the sum of all forces due to each
incoming and outgoing beams present at the optical component; for a mirror this is four
beams and at a beamsplitter it is eight,

Ftotal(f) = −F1i(f)− F1o(f) + F2i(f) + F2o(f), (5.4)

= cos(α)
−P1i(f)− P1o(f) + P2i(f) + P2o(f)

c
. (5.5)

The ± for each Ps is determined by which side of the mirror or beamsplitter the beam
is on: The positive direction of motion, the surface normal, for the mirror is defined as
the direction of the beam reflected by the side of the first node. Thus an incoming or

120

5.2 Mirror motion to optical phase change

outgoing beam imparts a negative momentum on the side of the first node and a positive
on the side of the last.

As we only compute the output for a single value of fs in each step we set Fs ≡ Ftotal(f)
and Px(f) ≡ Ps,x leaving,

Fs =
cos(α)

c
(−Ps,1i − Ps,1o + Ps,2i + Ps,2o) . (5.6)

Variables subscripted with an s are typically frequency dependent terms which are being
computed at an assumed signal frequency fs. The longitudinal motion at the signal
frequency is then found using,

Zs = Hs

NF∑
n

Fs,n. (5.7)

Where Hs is the transfer function (See section 3.1.2) for the mechanical response of the
susepended optic due to a force being applied to it in the z direction. This sum of forces
can also contain other external forces being applied, such as from actuators.

5.2 Mirror motion to optical phase change

Evaluating equation 5.7 determines the amplitude and phase of the mirror oscillations.
When carrier fields and RF modulation sidebands are reflected from a moving mirror this
oscillation will produce phase modulation signal sidebands, a±, around these fields. The
variation in height of a mirror’s surface at a frequency fs is described by zs(x, y), this
function is a normalised description of the general motion; its amplitude is given by As,
where A+

s ≡ As and A−s ≡ A∗s (as lower sideband computation requires the conjugate of
the motion amplitude). For example, longitudinal motion is described by zs(x, y) = 1
and thus As = Zs is in meters. Rotational motion is defined by zs(x, y) = x or y with
As = Θx/y in radians. Making the assumption that |As| � λ 1064nm, the creation of
signal sidebands is linearised,

a±s,jnm =
irkA±s
cos(α)

∑
n′,m′

ac,jn′m′

∫∫ ∞
∞

un′m′(x, y)ei2kzo(x,y)zs(x, y)u∗nm(x, y)dxdy.(5.8)

We find that the creation of sidebands can be described using coupling matrices, where
Ko is the static surface distortion present and Ks is the coupling caused by the motion
of the surface,

Ko
nmn′m′ =

∫∫ ∞
∞

un′m′(x, y)ei2kzo(x,y)u∗nm(x, y)dxdy, (5.9)

Ks
nmn′m′ =

∫∫ ∞
∞

un′m′(x, y)zs(x, y)u∗nm(x, y)dxdy, (5.10)

a±s,jnm =
irkA±s
cos(α)

∑
n′,m′

ac,jn′m′(K
sKo)nmn′m′ (5.11)

121

Chapter 5 Radiation pressure

Longitudinal motions are relatively simple to compute as the Ks = I, meaning that the
proportional content of the incoming carrier fields is replicated in the phase modulation
signal sidebands.

zs(x, y) = 1 (5.12)

Ks
nmn′m′ = δnn′δmm′ , (5.13)

a±s,jnm =
irk

cos(α)
Z±s

∑
n′,m′

ac,jn′m′K
o
nmn′m′ (5.14)

Further higher-order motions like rotations require an analytic solution to Ks which can
be found in [Brown].

5.3 Example: optical spring

In this examine we show how to suspend a cavity and to readout the transfer function
from a force (applied to the suspended mirrors) to the mirrors motion.

Radiation pressure inside a suspended cavity can create so-called optical springs, which
are created from combination of the radiation pressure force and the usual restoring force
due to gravity. An optical spring is created when the cavity is detuned so that the power
in the cavity depends linearly on the change in the mirror position. Optical springs can
be stable or unstable, depending on the direction of the detuning. Optical springs can
cause interesting effects in suspended interferometers and with Finesse we can model
how the motion mirror motions and optical signals are affected by them.

Firstly we define a simple optical cavity using just plane waves for now. We have detuned
the far mirror of the cavity, to allow for an optical spring:

l l1 3 0 n1a

s s1 0.5 n1a n1b

m Min 0.9937 0.0063 0 n1b n2

s cav1 1 n2 n3

m Mend 1 0 -0.048 n3 n4

To make the cavity mirrors suspended all we need to do is specify a mass for the mirrors
using the attr command:

attr Min mass 0.25 # kg

attr Mend mass 0.25 # kg

By default any mirror or beamsplitter given a mass becomes a free mass, i.e. the me-
chanical response to a force applied to it in the axis of the beam is ∝ 1/f2, where f is the
frequency of the force applied. Simple but realistic or more complex suspensions systems
can also be modelled by describing the mechanical response – or transfer function from
force to motion – via poles, zeros and quality factors. For this example we define a trans-
fer function for a suspension system that has a resonance at 1 Hz with a quality factor

122

5.3 Example: optical spring

of Q = 105. Multiple suspension setups can be create and are applied to a suspended
mirror or beamsplitter using the attr command:

tf sus 1 0 p 1 100000

attr Min zmech sus

attr Mend zmech sus

Now that we have our suspended cavity setup we want to output the motions of these
mirrors. This is done using the motion detector, xd. Here we specify which suspended
mirrors we want to output and which of its motions, the z motion in this case::

xd ETM Mend z

xd ITM Min z

A motion of a suspended mirror can be induced in two ways: by applying a mechanical
force with fsig, or via some modulated optical field, e.g. an amplitude modulated carrier
field. For this example we will apply a force to the far mirror of the cavity, setting the
target property of the fsig to Fz, i.e. a force to the z motion.

fsig aforce Mend Fz 1 0 1

xaxis aforce f log 0.1 1k 1000

yaxis log abs:deg

We scan the frequency of the applied force and plot the magnitude and phase of the
mirrors’ motion, the result is shown in figure 5.1. We can see that even though we are
only applying a force the far mirror the input mirror is also moving due to the optical
spring effect, i.e. the strong circulating light field coupling the two mirrors mechanically.
If the cavity is put exactly on resonance then the input mirror will not move. There are
two peaks in the motions, the one at 1 Hz is the suspension resonance and the second at
80 Hz is the optical spring resonance. From the phase of the motion we can also tell that
at frequencies below 50 Hz the mirrors move in a common mode with equal magnitude,
this is commonly referred to as optical rigidity. Above this frequency the mirrors move
differentially or out-of-phase.

The complete Finesse file for this example is then:

l l1 3 0 n1a

s s1 0.5 n1a n1b

m Min 0.9937 0.0063 0 n1b n2

s cav1 1 n2 n3

m Mend 1 0 -0.048 n3 n4

tf sus 1 0 p 1 100000

attr Min m 0.25 zmech sus

attr Mend m 0.25 zmech sus

123

Chapter 5 Radiation pressure

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

 0.1 1 10 100 1000
-200

-150

-100

-50

 0

 50

 100

 150

 200
A

b
s

P
h
a
se

 [
D

e
g
]

f [Hz] (aforce)

optical_spring_mechTF Sun May 11 23:56:51 2014

ETM : Abs
ETM : Phase [Deg]

ITM : Abs
ITM : Phase [Deg]

Figure 5.1: Transfer function from force applied to cavity end mirror to motion of both
cavity mirrors.

fsig aforce Mend Fz 1 0 1

xd ETM Mend z

xd ITM Min z

xaxis aforce f log 0.1 1k 1000

yaxis log abs:deg

5.4 Rotational mirror motion

Rotational mirror motion is essentially the next higher-order motion possible after lon-
gitudinal motion along the beam axis. The rotations implemented in Finesse are yaw
and pitch – which are the dynamic equivalent to the xbeta and ybeta DC rotations of a
mirror or beamsplitter respectively. Again, a mirror or beamsplitter becomes suspended
in rotation when we state the optic’s moment of inertia with either the Ix for yaw or Iy
for pitch. As with longitudinal motion, more complex suspensions can also be specified
with transfer functions from torques to rotations. A simple example:

attr component_name Ix 0.25

attr component_name Iy 0.25

attr component_name rxmech transfer_function

attr component_name rymech transfer_function

124

5.5 Example: torsional optical spring

5.5 Example: torsional optical spring

Below we will plot the transfer function from a torque applied to the end mirror of a
cavity to both of the mirrors’ yaw motions. For this we specify the moment of inertia for
each mirror, the transfer function for the suspension and use the xd detectors to read out
the yaw motions. The torque is applied to the mirror using the fsig command targetted
at the mirror’s Frx property, i.e. force in the rotational x-z plane motion.

tf rxpend 1 0 p 0.6 1000

l l1 100 0 n1

m Min 0.99 0.01 0 n1 n2

s cav 4000 n2 n3

m Mend 1 0 0 n3 n4

attr Min Ix 1 rxmech rxpend

attr Mend Ix 1 rxmech rxpend

attr Min Rc -2076

attr Mend Rc 2076

cav c1 Min n2 Mend n3

fsig aforce Mend Frx 1 0 1

xd rx_in Min rx

xd rx_end Mend rx

xaxis aforce f log 2e-1 3 1000

yaxis log abs:deg

maxtem 1

The output is shown in figure 5.2. In this we can see two resonance peaks, these are
due to the soft and hard rotational modes of a cavity: soft is when the mirrors rotate
out-of-phase with one another, which is an unstable motion; the hard mode is when the
rotational motion is in-phase. The suspension resonance at 0.6 Hz is no longer at exactly
that frequency due to it being shifted by the opto-mechanical coupling.

5.6 General of surface motions

Longitudinal and rotational motions are the most commonly used and the analytically
simple nature of zs(x, y) means that analytic solutions for Ks are available. For more
complicated motions, such as surface motions as a result from internal modes of the
mirror’s substrate being excited, the individual elements of Ks must be computed via a
numerical integration routine.

125

Chapter 5 Radiation pressure

1e-05

0.0001

0.001

0.01

0.1

1

10

100

 0.2 0.4 0.6 0.8 2 1
-200

-150

-100

-50

 0

 50

 100

 150

 200
A

b
s

P
h
a
se

 [
D

e
g
]

f [Hz] (aforce)

torsion_optical_spring Fri May 16 17:58:47 2014

rx_in : Abs
rx_in : Phase [Deg]

rx_end : Abs
rx_end : Phase [Deg]

Figure 5.2: Transfer function from torque applied to cavity end mirror to yaw motion of
both cavity mirrors. Plot shows both soft (first resonance) and hard (second resonance)
mode motions.

As there is no direct analog of mass or moment of inertia for a general motion, you need
only specify the motion for it to become ”suspended”, for this we use the smotion (surface-
motion) command (currently only available for mirror components, not beamsplitters):

smotion component map_filename transfer_function

The transfer function is not easily described in words as it depends on the units of As
and whether it is a torque/force that will drive it. However it must relate how some
”force” applied generates some motion zs(x, y) with an amplitude As. Multiple smotion

commands can be used at the same time on a component.

This motion can then be treated like any other, we can output them using:

xd name component s0

xd name component s1

xd name component s2

...

xd name component sN

where we reference the surface motion using the variables s0, s1,. . . , sN, which refer to
the motions in the order that they are defined in the script. If the ordering of the smotion
commands are changed then the motion that the sN refers to will change.

5.6.1 Parametric gain detector

Finesse provides a detector to output the open loop transfer function from a motion
back into itself. This is primarily used for modelling of parametric instabilities, of which

126

5.7 Example: parametric instabilities

an example of will follow in the next section. As described in [Evans], the parametric
gain Rm of a motion and its opto-mechanical interaction in a particular system is given
by:

Rm = Re

[
∆As
As

]
(5.15)

If Rm > 1 the motion is unstable and will exponentially increase with time, a behaviour
that cannot be modelled explicitly with Finesse. The real part of complex open loop
transfer function ∆As

As
can be outputted using the command,

pgaind name component motion

5.7 Example: parametric instabilities

Parametric instabilities here concern how a surface motion can postively or negatively
feedback into itself due to optical coupling. Modelling this requires both reasonable
models of the surface motions of a particular mirror which is determined using Finite-
Element-Model (FEM) software and the optical system in which it is present, which
is modelled by Finesse. From the FEM model the surface height variations must be
extracted and stored in a file formatted identically to that of a static surface map (See
section 4.7.5).

This example is based on the example shown in [Evans] which aims to demonstrate how
a particularly bad parametric instability can be present if the overlap between the beam
shape and surface motion is large. The surface motion that is used is shown in figure
5.5, as can be seen it appears similar in shape to that of the TEM11. As the resonance
frequency of such surface modes can vary, this simulation sweeps the motion resonance
to see if and where the motion might become unstable.

l l1 3530 0 n1 # power so that there is 1MW in the cavity

tem l1 0 0 0 0

tem l1 1 1 1 0

m m1 0.986 0.014 0 n1 n2

s s1 3994.5 n2 n3

m m2 0.99999 1e-5 0 n3 n4

cav c1 m1 n2 m2 n3

attr m1 Rc -1934

attr m2 Rc 2245

tf tf1 1 0 p 30k 1E7

smotion m2 surf_mod.map tf1

127

Chapter 5 Radiation pressure

pgaind R m2 s0

yaxis re

To plot the sidebands in the cavity

uncomment these and remove oltfd above

#ad upper 1 1 $fs n2

#ad lower 1 1 $mfs n2

#yaxis abs

fsig l_sig l1 1 0 1

The aim is scan the resonance frequency of the motion

to see which might become unstable.

put tf1 fp1 $x1

xaxis l_sig f lin 20e3 50e3 1000

maxtem 2

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

 20000 25000 30000 35000 40000 45000 50000

R
e

f [Hz] (l_sig)

pi Mon May 12 17:12:18 2014

 :

Figure 5.3: Parametric gain of a surface motion with a large overlap with the TEM11

mode which is injected into the cavity. The resonance frequency of the motion is
scanned and the we find Rm < 1 so the motion does not become unstable.

It can be see from figure 5.3 that Rm is always less than 1 thus not instable. We can
see in figure 5.3 that when the upper sideband becomes resonant the mirror motion is
damped, thus mechanical energy is extracted into the optical field. When the lower
sideband becomes resonant energy is being fed into the motion of the mirror. This is an
example of optical cooling.

It should also be noted that figure 5.3 differs slightly to what is found in [Evans]. This
is due to the inclusion of all modes up to order 2, rather than just purely TEM11, which
is the cause for the slight difference around 37.5 kHz. The scaling also differs and this

128

5.7 Example: parametric instabilities

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

 20000 25000 30000 35000 40000 45000 50000

A
b
s

f [Hz] (l_sig)

pi Mon May 12 17:06:47 2014

upper n2 : lower n2 :

Figure 5.4: Resonance of TEM11 signal sidebands in the cavity due to surface motion.

15 10 5 0 5 10 15
x [cm]

15

10

5

0

5

10

15

y
 [

cm
]

Surface map mirror_surf_mode, type phase reflection

2.4

1.8

1.2

0.6

0.0

0.6

1.2

1.8

2.4

N
o
rm

a
lis

e
d
 m

o
ti

o
n
 a

m
p
lit

u
d
e

Figure 5.5: Surface motion map

due to the normalisation of the map data. It is stated in [Evans] that the function is
normalised to equal the volume of the optical element, this was not done in this case.

129

130

Chapter 6

Quantum noise

From version 2.0 Finesse has the ability to model quantum noise as described by the
two-photon formalism [Caves], including the radiation pressure induced coupling between
noise quadratures and the injection of squeezed vacuum. This feature is based on a
computationally efficient method for evaluating the quantum noise for many fields (such
as higher-order modes) and many open ports (e.g through optical losses).

6.1 New quantum noise modelling

The quantum noise computations are based on two-photon formalism [Caves]. This sec-
tion introduces a description of quantum noise using two correlated photons, or a pair of
symmetric sidebands, to model the variance of the phase and amplitude fluctuation of the
light. These quantum noise sidebands are not dissimilar to signal sidebands as discussed
previously. In fact they are solved using exactly the same interferometer matrix. The key
difference between quantum noise and signal sidebands is that the signals are considered
coherent whereas quantum noise sources are incoherent and their contribution to the total
noise at an output must be computed accordingly.

Finesse is often used to model one output signal of an optical system with many open
ports, such as gravitational wave detectors. We have developed a algorithm which takes
this into account, using a method to propagate all quantum noise sources in as few a steps
as possible [Brown], by computing Vo, the output covariance matrix of the quantum noise
sidebands,

Vo = M−1
q ViM−1 †

q . (6.1)

Here Mq is the quantum noise sideband interferometer matrix and Vi is the input variances-
covariance matrix of the quantum noise sidebands. Mq is a matrix that describes all
optic to optic, optical to mechanical and mechanical to optical couplings for computing
the transfer functions of noise to any node in the interferometer. Once Vo is known var-
ious outputs regarding the quantum noise can be computed such as photodiode noise,
squeezing factors, amplitude and phase quadratures.

131

Chapter 6 Quantum noise

6.1.1 Sources of quantum noise

Finesse by default includes all possible vacuum noise sources in any simulation which in-
cludes a quantum detector. Therefore, to model quantum noise you need only include the
appropriate detectors as described below. The three noise sources currently implemented
in Finesse are:

• Open ports: An open node (connected to only one component) has vacuum state
fluctuations injected through this node. Note that a ‘dump’ node is not treated as
an open port.
• Optical losses: Any optical loss defined at a component such as a mirror or beam-

splitter will inject a defined amount of vacuum noise back into the respective nodes
of the component.
• Squeezed input: A squeezing input will inject squeezed vacuum into the connected

node.

To see which quantum noise sources are present in a particular simulation you can use
the command,

printnoises

(this will only work if you have specified one of the quantum noise detectors mentioned
in the next section) producing text output such as::

-- Quantum noise inputs --

|- sq1 - SQUEEZED INPUT Node nfc1

|- mfc1 - OPEN PORT Node nfc2

|- mfc2 - LOSS Node nfc5

|- mfc2 - LOSS Node nfc6

|- mfc2 - OPEN PORT Node nfc7

|- mfc2 - LOSS Node nfc7

|- mfc2 - OPEN PORT Node nfc8

|- mfc2 - LOSS Node nfc8

Here the first column is the component where the noise is injected, the second states what
type of noise and the node at which it is incoming. You can also choose to model specific
components and their noise sources if you wish using the command:

vacuum component1 component2 ...

where each component you want to include noise from is listed. Doing this allows you
to model how specific noise will affect certain outputs or find out which is the dominant
noise source for example. When the vacuum command is used only the specified com-
ponents will inject vacuum, all other losses, or open ports or squeezer components
will not.

It should also be noted that dump nodes are ignored completely by Finesse, thus dump
nodes do not act like open ports. For noise to be injected into the the system you must
give the node a name.

132

6.1 New quantum noise modelling

Setting the noise frequency

The frequency at which quantum noise sidebands are computed at the same frequency as
signal sidebands. To specify which frequency the noise is computed at the signal sideband
frequency must be set with the fsig command for both signal and noise computations.
However in some simulations you may not need to actually model some signal being
applied and are just interested in computing noises. In this case you can use the shortend
version, where you specify just a name for the frequency as a handle and the initial value,

fsig name f

You can then sweep the frequency using an xaxis by targetting name and the f parameter.

Squeezed light injection

Squeezed light can be injected into any node using the new squeezing component. This
behaves like a light input but it does not inject any carrier fields. You need to state how
many decibels of squeezing you need and how the squeezed state is rotated in degrees.
You can use the quantum noise detectors qnoised, qd or sd (which are described next)
to see the effect. The relation between the squeezing factor we set in dB rdb and the
squeezing factor used for calculations r is:

rdb = 20 r log10(e). (6.2)

To note, setting a squeezing of 20 dB in Finesse will result in reduction in the amplitude
spectral density of the noise up to a factor of 10.

6.1.2 Quantum detectors

The key aspects of the new quantum noise feature are the new quantum detectors. These
allow you to extract information about the quantum noise of the optical system. There are
currently two types of detectors: those to detect the noise of the photocurrent produced
at a photodiode, for example to produce a quantum-noise limited sensitivity curve, and
those for reading out quantum noise around a specified carrier frequency.

Photodiode noise: qnoised and qshot

The quantity we are most interested in computing is the photocurrent noise of a par-
ticular photodiode output, particularly to compute sensitivities or noise-to-signal ratios
(see 6.1.2). The two available detectors for computing the noise of a photodiode output
are called qnoised and qshot. Both detectors commands follow closely the photodiode
commands. Like the normal pd detectors, the qnoised and qshot accept up to 5 demodu-
lations. The demodulation of a photocurrent mixes different components of the quantum
noise present in the optical fields, which must be correctly taken into account as outlined

133

Chapter 6 Quantum noise

in [Harms]. The difference between qnoised and qshot is that qshot assumes only shot
noise (or a pure vacuum state) is present in the detected fields, thus this detectors will not
see any effects from squeezing or radiation pressure. However, it required less computing
resources and can be used if such effects are not of interest. The qnoised detector returns
the proper quantum noise of the detected fields and thus takes into account both radiation
pressure effects and squeezing. You may chose to compre the outputs of both of these
detectors to highlight the impacts of squeezing or radiation pressure effects. For qnoised
to see any radiation pressure or squeezing effects the final demodulation frequency must
be set to the signal frequency specified with fsig. Finesse takes all the carrier fields
and applies sidebands at the fsig frequency to all of them, this is the frequencies used to
compute the radiation pressure and quantum noise effects. For example, for a photodiode
that has one demodulation at frequency f with phase phi and we wish to see radiation
pressure or squeezing effects we would use the code:

qnoised name 2 f phi $fs node

where the variable $fs refers to the current positive signal frequency of the simulation
(see section 3.1.2). This detector outputs an amplitude spectral density by default, see
6.1.2 for more information. Currently (Finesse 2.0) quantum noise detectors do not use
the quantum efficiency setting given in the kat.ini file, this feature will likely be added
in an upcoming version. In the meantime the same effect can be reproduced using a lossy
mirror with zero reflectivity in front of the detector.

It should be noted both qnoised and qshot cannot use the max helper keyword for
a demodulation phase due to the implementation of the algorithm. Thus numerical
values have to be specified for the demodulation phases for the correct noise values to be
computed.

Sensitivity (noise-to-signal): qnoisedS and qshotS

A typical usage of the quantum noise detectors is to generate so-called sensitivity plots,
which are effectively noise-to-signal ratios, where we apply some signal to the interferom-
eter using fsig and then measure how that transfers to some photodiode output. This
can be achieved by using both a pd for computing the signal and qnoised or qshot for
the noise, and then using func to divide the two. To simplify that process you can use
the ’S’ or ‘sensitivity’ versions of both qnoised and qshot. For example: be shown with,

qnoisedS name 2 f1 phi1 $fs max node

Note, that in this case the max keyword can be used, because a signal computation is
included: Internally the signal part is computed first, whereby the optimum demodulation
phase for the signal is found, this phase is then set automatically for the noise computation
providing a correct noise output. You should also keep in mind that when using this
you may require some scaling of the signal transfer function as described in section 6.2
depending on the type of the applied signals.

134

6.1 New quantum noise modelling

Photodiode noise output scaling

By default in Finesse the detectors qnoised, qshot and shot will return amplitude spec-
tral densities (ASD) of the noise, as this is what is commonly plotted in sensitivity plots.
This behaviour can changed using the quantum_scaling settings in the kat.ini file.
Note when comparing results from other people or different machines, large differences
noise levels could well be due to this setting! The options are:

1 = Power spectral density

2 = Power spectral density in units of hf

3 = Amplitude spectral density (default)

4 = Amplitude spectral density in units of sqrt(hf)

Note that you can choose to not include the hf factors, this provides a numerically simpler
values for some comparisons with theory.

Squeezing detector: measuring the vacuum

The squeezing detector sd:

sd name carrier_frequency [n m] node[*]

can be used to determine whether a carrier field is squeezed or not. The output describes
the noise ellipse for a particular carrier (for the given TEMnm mode). The detector out-
puts a complex number whose magnitude is the squeezing level in dB rdb. The ‘squeezing
factor’ r is related to rdB by:

rdb = 20 r log10(e). (6.3)

The phase of the complex output is φ the squeezing angle in degrees (use the yaxis

command to output phase information). When φ = 0, 180 and r 6= 0 then the carrier is
amplitude squeezed, when φ = ±90 and r 6= 0, the carrier is phase squeezed.

This detector only tells you information about a specific carrier field defined by the
frequency offset value (and the mode indicies).

Quadrature detector: debugging the squeezed state

The quadrature detector, qd:

qd name carrier_frequency phase node[*]

allows you to extract a particular noise quadrature of a single carrier field. With this
you can for example plot the amplitude and phase quadratures of a field given in units
of hf , where f is the frequency of the carrier and h Planck’s constant. A pure vacuum
state would output a value of ’1’ for both quadratures, any deviation from this shows
squeezing or an increase in the noise due to losses. The crucial part in using this detector
is selecting the correct quadrature angle; an angle of 0 will output the carrier fields

135

Chapter 6 Quantum noise

amplitude quadrature, 90 will output its phase quadrature noise. Of coure you can also
choose any angle between 0 and 360.

6.1.3 Example: unbalanced quantum noise homodyne detection

An unbalanced homodyne detector setup is a good way to understand how the various
detectors work. The setup consists of a laser, a squeezed source, a 50:50 beamsplitter
and a photodiode. We mix the squeezed and laser fields and measure the output at the
photodiode.

We mix a 10dB squeezed source and a 1W laser at the beamsplitter and measure the
result at the photodiode, varying the phase of the laser field.

l l1 1 0 n1

s s1 0 n1 n2

sq sq1 0 10 0 n3

s s2 0 n3 n4

bs bs1 0.5 0.5 0 45 n4 nout1 nout2 n2

Setting the frequency at which we compute the quantum noise

and signals. We aren’t applying any signal, we just need

to set the frequency value and give it a name.

fsig noise 1

output the pure shot noise along with the qnoised detector

measuring the effects of the squeezing

qnoised sqzd_noise 1 $fs 0 nout1

qshot shot_noise 1 $fs 0 nout1

xaxis l1 phase lin -90 90 360

Figure 6.1 shows the output of the script: the shot noise output is flat whereas the
qnoised detector output shows and increase or reducing below the shot noise, depending
on the phase. You should also see here that you must be careful to ensure that any
squeezed field and laser fields have the correct phase and squeezing angle to ensure that
you have the effect you desire (try for example to change the length of s1 and see what
happens).

With the second file in this example, the qd detectors are used to extract the quadrature
values for the laser field.

l l1 1 0 n1

s s1 0 n1 n2

sq sq1 0 10 0 n3

s s2 0 n3 n4

bs bs1 0.5 0.5 0 45 n4 nout1 nout2 n2

136

6.1 New quantum noise modelling

50 0 50

phase [deg] (l1)

0

1

2

3

4

5

6

A
b
s

sqzd_noise nout1 :

shot_noise nout1 :

Figure 6.1: qnoised and qshot detector outputs for a homodyne setup. The laser phase
is varied to show squeezing and anti-squeezing can be seen. The noise scaling for this
plot has been set to ’Power spectral density in units of hf’ via the quantum_scaling

setting in the ‘kat.ini’ file.

defining a ’signal’ or noise frequency

fsig noise 1

setup quadrature detectors to output both the

amplitude and phase quadratures

qd qdA 0 0 nout1

qd qdP 0 90 nout1

xaxis l1 phase lin -90 90 360

In figure 6.2 the output is shown and we can clearly see how the amplitude and phase
quadratures of the laser field are varying.

Finally, the sd detector can be used to extract how much squeezing, and at what angle,
we have. Note for this example we have changed the squeezing angle of the input source
by 45 degrees, just for something to measure.

l l1 1 0 n1

s s1 0 n1 n2

sq sq1 0 10 45 n3

s s2 0 n3 n4

bs bs1 0.5 0.5 0 45 n4 nout1 nout2 n2

137

Chapter 6 Quantum noise

50 0 50

phase [deg] (l1)

0

1

2

3

4

5

6

A
b
s qdA nout1 :

qdP nout1 :

Figure 6.2: qd detector outputs shows how both the amplitude and phase quadratures
vary due to a change in the laser phase.

fsig noise 1

sd sd1 0 nout1

xaxis l1 phase lin -90 90 360

yaxis abs:deg

The results are shown in figure 6.3. This is a rather boring plot, but we can see that
the noise ellipse has a squeezing factor rdb = 5dB and is rotated by an angle of φ = 45
degrees.

6.1.4 Example: dual-recycled, quantum-noise limited sensitivity

This next example brings together many of the new features for computing the quantum-
noise limiting sensitivity of a dual-recycled michelson interferometer. The model is loosely
based on the Advanced LIGO design file and thus we can expect to see the peak sensitivity
around 100 Hz at a sensitivity of about 10−23 /

√
Hz. The file will firstly setup all the

various optical cavities (using a plane waves model). It then proceeds to suspend the arm
cavity mirrors whilst setting the mechanical suspension transfer functions to a simple
pendulum with a resonance at 1 Hz. Next, a gravitational wave signal is injected as a
modulation to both arm ‘spaces’, out of phase by 180 degrees. Lastly we use the qnoisedS
and qshotS detectors to output the noise-to-signal ratio, or the sensitivity.

138

6.1 New quantum noise modelling

100 50 0 50 100

phase [deg] (l1)

4

4

4

5

5

5

5

A
b
s

42

43

44

45

46

47

48

P
h
a
se

 [
D

e
g
]

 nout1 : Abs

 nout1 : Phase [Deg]

Figure 6.3: Example output of an sd detector in a homodyne setup.

File based on aLIGO reference design, DCC number M060056

Laser input

l l1 $Pin 0 nin

s s1 0 nin nprc1

Power recycling mirror

m1 prm $prmT 37.5u 90 nprc1 nprc2

s prc $lprc nprc2 nbsin

Central beamsplitter

bs bs1 .5 .5 0 45 nbsin n0y n0x nbsout

X-arm

s ichx $lmichx n0x n1x

m1 itmx $itmT 37.5u 90 n1x n2x

s armx $Larm n2x n3x

m1 etmx 5u 37.5u 89.999875 n3x n4x

attr itmx mass $Mtm zmech sus1

attr etmx mass $Mtm zmech sus1

Y-arm

s ichy $lmichy n0y n1y

m1 itmy $itmT 37.5u $michy_phi n1y n2y

s army $Larm n2y n3y

m1 etmy 5u 37.5u 0.000125 n3y n4y

attr itmy mass $Mtm zmech sus1

attr etmy mass $Mtm zmech sus1

Signal recycling mirror

139

Chapter 6 Quantum noise

s src $lsrc nbsout nsrc1

m1 srm $srmT 37.5u $srm_phi nsrc1 nsrc2

Force-to-position transfer function for longitudinal

motions of test masses

tf sus1 1 0 p $mech_fres $mech_Q

const mech_fres 1 # 9 sus-thermal spike

const mech_Q 1M # Guess for suspension Q factor

DC readout: 100mW = michy_phi 0.07 _or_ darm_phi .00025

const michy_phi 0

const darm_phi .00025

const Larm 3995

const itmT 0.014

const srmT 0.2

const prmT 0.03

const Pin 125

const Mtm 40

const srm_phi -90

const lmichx 4.5

const lmichy 4.45

const lprc 53

const lsrc 50.525

A squeezed source could be injected into the dark port

sq sq1 0 0 90 nsrc2

Differentially modulate the arm lengths

fsig darm armx 1 0

fsig darm2 army 1 180

Output the full quantum noise limited sensitivity

qnoisedS NSR_with_RP 1 $fs nsrc2

Output just the shot noise limited sensitivity

qshotS NSR_without_RP 1 $fs nsrc2

We could also display the quantum noise and the signal

separately by uncommenting these two lines.

qnoised noise $fs nsrc2

pd1 signal 1 $fs nsrc2

xaxis darm f log 5 5k 1000

yaxis log abs

The final plot is shown in figure 6.4. Here we can see the both the qnoised and qshot

agree at high frequency, which they should as both model shot noise correctly. At low
frequencies we see that they differ as qshot does not detect any radiation pressure effects.

140

6.1 New quantum noise modelling

101 102 103

f [Hz] (darm)

10-24

10-23

10-22

10-21

A
b
s

NSR_with_RP nsrc2 :

NSR_without_RP nsrc2 :

Figure 6.4: A dual-recycled michelson quantum noise limited sensitivty plot

100 101 102 103 104

f [Hz] (noise)

0

1

2

3

4

5

6

A
b
s

0

10

20

30

40

50

60

70

80

90

P
h
a
se

 [
D

e
g
]

qd_amp nfc1 : Abs

qd_amp nfc1 : Phase [Deg]

qd_phs nfc1 : Abs

qd_phs nfc1 : Phase [Deg]

sd1 nfc1 : Abs

sd1 nfc1 : Phase [Deg]

Figure 6.5: Perfect mirror filter cavity rotating the noise ellipse 90 degrees to get fre-
quency dependent squeezing

141

Chapter 6 Quantum noise

6.1.5 Example: a filter cavity, or how to rotate a squeezed state

This example aims to show how filter cavities can be modelled or how such cavities can
rotate a squeezing ellipse [Kimble]. The setup includes a 16 m long cavity with a perfectly
reflective end mirror and 70 ppm transmission for the input mirror. The end mirror is
then slightly detuned and we reflect a squeezed input (5 dB squeezing) of the cavity.

sq sq1 0 5 90 nin

s s1 0 nin nfc1

m1 mfc1 70u 0 0 nfc1 nfc2

s sfc1 16 nfc2 nfc3

m1 mfc2 0 0u -0.001 nfc3 nfc4

qd qd_amp 0 0 nfc1

qd qd_phs 0 90 nfc1

sd sd1 0 nfc1

fsig noise 1

xaxis noise f log 1 5000 10000

yaxis abs:deg

printnoises

We then use both the qd and sd detectors to see what is happening. Figure 6.5 shows
the results. Firstly we see that the amplitude and phase quadratures rotate by 90 at
around 75 Hz, at low frequency we have phase squeezing and at high we have amplitude
squeezing, in this particular case – you can simply adjust the squeezing angle at the input
to flip this behaviour around. The sd detector also shows that for the whole bandwidth
we have 5 dB of squeezing, so it never degrades, and that we do in fact have a rotation
in the noise ellipse of 90 degrees.

But what happens if we include some losses? Let’s add 100 ppm losses to the end mirror,
the result is shown in figure 6.6.

sq sq1 0 5 90 nin

s s1 0 nin nfc1

m1 mfc1 70u 0 0 nfc1 nfc2

s sfc1 16 nfc2 nfc3

m1 mfc2 0 10u -0.001 nfc3 nfc4

qd qd_amp 0 0 nfc1

qd qd_phs 0 90 nfc1

142

6.2 Shot-noise-limited sensitivity (before version 2.0)

100 101 102 103 104

f [Hz] (noise)

0

1

2

3

4

5

A
b
s

-20

0

20

40

60

80

100

P
h
a
se

 [
D

e
g
]

qd_amp nfc1 : Abs

qd_amp nfc1 : Phase [Deg]

qd_phs nfc1 : Abs

qd_phs nfc1 : Phase [Deg]

sd1 nfc1 : Abs

sd1 nfc1 : Phase [Deg]

Figure 6.6: Lossy filter cavity behaviour showing squeezing degradtion at low frequencies
due to a lossy end mirror.

sd sd1 0 nfc1

fsig noise 1

xaxis noise f log 1 5000 10000

yaxis abs:deg

printnoises

We now see that the squeezing is being degraded at low frequency due to the vacuum
noise entering the cavity from the lossy end mirror. This only happens at low frequency
when those vacuum fluctuations are within the cavity line width.

6.2 Shot-noise-limited sensitivity (before version 2.0)

This section outlines the older shot noise computations that were available before version
2.0, it does however contain useful information regarding correct scaling of sensitivity
limits and transfer functions.

This section gives a detailed description on how Finesse computes shot-noise using the
shot command and the respective linear spectral density that is often called sensitivity.
In has been shown to be difficult to remember all factors of 2 correctly, and thus a step
by step explanation for a simple example system is provided here.

143

Chapter 6 Quantum noise

Appendix B further provides a comparison between different methods of computing the
shot noise with Finesse: analytically from the DC power, using the shot command and
using the new qshot command, which can correctly compute the shotnoise for heterodyne
detection schemes. The appendix is based on a dedicated effort by the GEO collaboration
in 2007 to understand and verify the shot noise level limiting the GEO sensitivity at high
frequencies.

The shot noise computation is based on the Schottky formula for the (single-sided) power
spectral density of the fluctuation of the photocurrent for a given mean current Ī:

SI(f) = 2 e Ī, (6.4)

with e the electron charge. Here SX(f) denotes the single-sided power spectral density
of X over the Fourier frequency f .

The link between (mean) photocurrent Ī and (mean) light power P̄ is given by the relation:

Ī = eN =
e η λ

~2πc
P̄ , (6.5)

with N as the number of photons and η the quantum efficency of the diode. Intead of
Planck’s constant we write ~ 2π to avoid confusion with the typical use of h(t) for the
strain of a gravitational wave.

Thus we can now give a power spectral density for the fluctuations of the photocurrent.
The conversion between Watts in Ampere is defined by the constant C2 in the relation
P̄ = C2 Ī. Thus the power spectral densities must be converted as SP (f) = C2

2SP (f).
With the relation SI(f) = C1 Ī we can then write:

SP (f) = C2
2SI(f) = C2

2 C1 Ī = C2
2 C1 P̄ /C2 = 2

2π ~ c
λ

P̄ . (6.6)

6.2.1 Simple Michelson interferometer on a half fringe

A simple example for computing a shot-noise-limited sensitivity is a Michelson interfe-
ormeter held on a half fringe. In this case no modulation sidebands are required to obtain
the output signal. In the following examples we will use:

• an input laser power of P0 = 1 W,
• the quantum efficiency is qeff = η = 1,
• a symmetric beam splitter with R = T = 0.5 (angle of incidence in Finesse is set

to 0 deg),
• we denote the interferometer outputs (arbitrarily following the GEO 600 layout) as

‘north’, ‘east’, ‘south’ and ‘west’, with the input port being in the west and the
light reflected by the beam splitter entering the north arm,
• the Michelson interferometer arm lengths are chosen as Lnorth = 1201 m and Least =

1200 m.

144

6.2 Shot-noise-limited sensitivity (before version 2.0)

The noise amplitude

The Michelson interferometer is set to a half fringe by detuning the beam splitter by
22.5 degrees so that the power in both the west and south output ports is 0.5 W. From
Equation 6.6 we expect a value of:

SP (f) =
6.6262 10−34 299792458

1064 10−9
W2/Hz = 1.867 10−19 W2/Hz, (6.7)

or as a linear spectral density
√
SP = 4.321 10−10 W/

√
Hz. Finesse returns the same

value if the shot detector is used.

The signal amplitude

The ‘signal’ in this example will be a differential motion of the end mirrors. In order to
compute the signals’ amplitude in the photodiode we can compute the transfer function
of the mirror motion to the photodiode. A motion of the end mirrors will modulate the
reflected light in phase.

In the following we set all macroscopic lengths to be multiples of the wavelength; the
signal frequencies are assumed to be very small so that the phase evolution for the carrier
and the signal sidebands due to the free propagation through the interferometer arms can
be considered equal.

The light fields entering the arms are given by:

EN in =
1√
2
Ein exp

(
i
π

4

)
, (6.8)

EE in =
1√
2
Ein exp

(
i
π

2

)
. (6.9)

Sidebands are created upon reflection on the end mirrors. The phase of the modulation is
set to be 0◦ at the north mirror and 180◦ at the east mirror. The phase of the sidebands
is given by Equation 3.103:

ϕsb = ϕc +
π

2
± ϕs − (kc + ksb) xt. (6.10)

The light reflected by the end mirrors (with r = 1) can then be written as:

EN = 1√
2
Ein exp (i π4)

(
1 + as exp

(
iωst+ π

2

)
+ as exp

(
−iωst− π

2

))
= 1√

2
Ein exp (i π4) (1 + asi (exp (iωst) + exp (−iωst)))

= 1√
2
Ein exp (i π4) (1 + 2asi cos (ωst)) ,

EE = 1√
2
Ein exp (i π2)

(
1 + as exp

(
iωst+ 3π

2

)
+ as exp

(
−
(
iωst+ π

2

)))
= 1√

2
Ein exp (i π2) (1− 2asi cos (ωst)) ,

(6.11)

145

Chapter 6 Quantum noise

with ωs as the signal frequency and as the amplitude of the mirror motion (given in
radians, with 2π referring to a position change of the mirror of λ). For a computation of
the transfer function in our example we later set as = 1 while at the same time we use
the approximations for as � 1.

At the beam splitter the reflected fields will be superimposed, in the south port we get:

ES = 1√
2

exp (i π2)EN + 1√
2

exp (−i π4)EE

= 1
2Ein exp (i π4) (1 + i − 2asi cos (ωst)− 2as cos (ωst))

= 1
2Ein exp (i π4) (1 + i) (1− 2as cos (ωst))

= i√
2
Ein (1− 2as cos (ωst)) .

(6.12)

With |Ein|2 = P0 = 1 W the power detected by the diode in each output port is thus:

Iout = 1
2P0

(
1 + 4a2

s cos2 (ωst)− 4as cos (ωst)
)

= 1
2

(
1 + 4a2

s cos2 (ωst)− 4as cos (ωst)
)

[W].
(6.13)

The power in the signal sidebands can be neglected so that the DC power in both output
ports is given as P0/2 = 0.5 W.

The signal amplitude is given by 2asP0. In Finesse to get the signal amplitude we
demodulate at the signal frequency, i.e. we multiply the output by cosωst and take the
DC part of the resulting sum:

Idemod = 2asP0 cos2 (ωst) +O(ω) +O(3ω)
= asP0 + asP0 cos (2ωst) +O(ω) +O(3ω).

(6.14)

The signal amplitude is thus given by asP0. By default a demodulation in Finesse is
understood as a multiplication with a cosine and thus reduces the signal size by a factor
of 2, with the exception that in the case of the transfer function this is not wanted for
the demodulation at the signal frequency.

With Finesse it is simple to compute a transfer function for a differential displacement
of the end mirrors into the detector output. For example, with the commands

fsig sig1 mE 1 0

fsig sig2 mN 1 180

pd1 south1 1 max n10

we compute the signal transfer function at 1 Hz. The Finesse output is: 2 W/rad. To
obtain the more useful units W/m we have to multiply by 2π/λ.

It is important to understand which lengths we refer to with this transfer function. Due to
the fact that Finesse can compute more general optical configurations than a Michelson
interferometer, the amplitude of the transfer function amplitude refers to the motion of
each single mirror. For example, a transfer function amplitude of 1 W/m means that the

146

6.2 Shot-noise-limited sensitivity (before version 2.0)

output power changes by one 1 nW when the east mirror is moved by 1 nm and the north
mirror by -1 nm. If we want to compute the transfer function referring to the differential
displacement ∆L = Lnorth − Least we have to divide the transfer function by a factor of
two. Thus we get:

T∆L→P =
2πP0

λ
=

2π

1064 10−9
W/m. (6.15)

If, in fact, the transfer function is to be given with respect to an optical path length
difference ∆L′ one has to divide by another factor of two:

T∆L′→P =
πP0

λ
=

π

1064 10−9
W/m. (6.16)

Apparent length noise

Now we can compute the apparent end-mirror motion (measured as an optical path length
difference) due to shot noise dividing the noise spectral density from Equation 6.6 by the
transfer function:

√
S∆L′(f) =

√
2π ~ c
λ P0

πP0
λ

=

√
2
~cλ
πP0

= 1.46310−16 m/
√

Hz. (6.17)

As expected we get exactly 0.25 times this value (i.e. 3.658504314e− 17) using Finesse
with:

fsig sig1 mE 1 0

fsig sig2 mN 1 180

pdS1 south1 1 max n10

scale meter

With two detectors, one in the west and one in the south port we can expect to have
a better sensitivity by a factor of

√
2. The detected signal is twice the signal detected

in a single port. Also, the detected total DC power increases by a factor of 2. Thus we
expect the signals-to-shot noise to increase by a factor of

√
2. For our example we get√

S∆L(f) =
√

~cλ
πP0

= 1.03410−16 m/
√

Hz.

6.2.2 Simple Michelson interferometer on a dark fringe

The following section demonstrates how to compute the shot-noise-limited sensitivity for a
Michelson interferometer on the dark fringe. However, since phase modulation is employed
the results based on the Schottky formula alone are not correct [Meers, Niebauer]. The
following calculation is meant as an exercise to show that – when the effects of the
modulation are neglected – the shot-noise-linited sensitivity at the dark fringe is exactly
as for a Michelson interferometer on a half fringe with two detectors.

147

Chapter 6 Quantum noise

Again we start with the light fields entering the arms which are now given by:

EN in = 1√
2
Ein exp (i π2), and

EE in = 1√
2
Ein exp (i π2).

(6.18)

The light reflected by the end mirrors (with r = 1) can then be written as:

EN = 1√
2
Ein exp (i π2) (1 + asi (exp (iωst) + as exp (−iωst)))

= 1√
2
Ein (i − 2as cos (ωst)) ,

EE = 1√
2
Ein exp

(
i π2
)

(1− asi (exp (iωst) + as exp (−iωst)))

= 1√
2
Ein (i + 2as cos (ωst)) .

(6.19)

And hence in the south port we get:

ES = 1√
2

exp (i π2)EN + 1√
2

exp (−i π2)EE

= −2iEinas cos (ωst).
(6.20)

The photocurrent generated by this output field does not contain a signal at the frequency
ωs. Such a signal component can be produced with a modulation-demodulation technique.
In this example we can simply add another pair of phase modulation sidebands and ignore
how these are exactly generated. Let us assume we have symmetric modulation sidebands
at ωm reaching the photodiode in the south port. We get:

ES = i b (exp (iωmt) + exp (−iωmt))− 2iEinas cos (ωst) (6.21)

= 2i b cos (ωmt)− 2iEinas cos (ωst). (6.22)

The power detected by the diode in each output port is thus:

Iout = 4b2 cos2 (ωmt) + 4a2
sE

2
in cos2 (ωst)− 8basEin cos (ωmt) cos (ωst) (6.23)

= 2b2 + 2a2
sP0 − 8bas

√
P0 cos (ωmt) cos (ωst) +O(2ωm) +O(2ωs). (6.24)

(6.25)

A demodulation at ωm gives a signal amplitude proportional to 4bas
√
P0.

An example calculation can be done with a modulation at 10 MHz:

mod eom1 10M .1 1 pm n2 n3

Then we first check the field amplitudes and the DC power in the output port (at node
n10) with:

pd dc n10

ad c 0 n10

ad b 10M n10

ad as 1 n10

We get:

148

6.2 Shot-noise-limited sensitivity (before version 2.0)

dc=0.0002158906915

c=2.929386532e-17

b=0.01038967496

as=0.9975015621

Thus the carrier power (c) is approximately zero, the signal sideband amplitude around
1 and the DC power is given by 2b2.

Using the Schottky formula, we expect to have a shot noise spectral density before the
demodulation of√

SP (f) =
√

22π~c
λ 2b2/

√
Hz

= 8.962 10−12 W/
√

Hz.
(6.26)

The shot detector in Finesse gives 8.978e-12. The transfer function then computes
as 0.041454868 which is exactly 4bas. Please note that in the presence of modulation
sidebands this is not quite correct. However, in many cases it can be used as a good
approximation.

Signal-to-noise

The transfer function for an optical path length difference is once more obtained by
multiplying the above result by 2π/λ and dividing by a factor of 4:

T∆L′→P =
2π

λ
b
√
P0. (6.27)

Now we have to propagate the shot-noise through the demodulator as well. Please con-
sider that this is not done automatically by Finesse even if you use a detector like, for
example, pdS2. We consider the amplitude spectral density

√
SP (f): because we are

only interested in the DC signal after the demodulation we can approximate the white
spectrum by two uncorrelated noise amplitudes at ±ωm with ωm being the demodula-
tion frequency. Thus the amplitude noise spectral density after demodulation can be
approximated as:[√

SP (f) cos(ωmt)
]
|DC
≈ (A1 cos (−ωmt) +A2 cos (ωmt)) cos(ωmt) (6.28)

with A1 and A2 as two uncorrelated amplitudes1 of the magnitude
√
SP (f). The right

side of above equation yields:

1

2
(A1 +A2) =

1√
2
A1 =

1√
2

√
SP (f) =

√
2π~c
λ

2b2/
√

Hz (6.29)

1 It should be clear that in a realistic scenario the noise amplitudes cannot be assumed to be always
uncorrelated.

149

Chapter 6 Quantum noise

This yields an apparent mirror motion of:

√
S∆L(f) =

√
2π~c
λ

2b2

2π
λ
b
√
P0

=
√

~cλ
πP0

= 1.0341010−16 m/
√

Hz,
(6.30)

which is the same as in the case of the Michelson interferometer at a half fringe with two
detectors.

150

Chapter 7

Advanced Usage

This chapter collects some thoughts and examples which might be of interest to more
advanced users.

7.1 PyKat: FINESSE and Python

During the past years our group has used MATLAB as a standard software for tasks such
as designing experiments, analysing data and especially in connection with Finesse,
see section 7.2 below.

Meanwhile the programming language Python has been extended by powerful modules
which can replace most of the basic MATLAB functionality. Python and the modules for
scientific computations are free and open source while MATLAB licenses can be expensive.
Furthermore some aspects of the MATLAB language are not ideally suited for some tasks,
typically handling text based files, which is sometimes of interest, for example, for the
automation of complex simulations. For several years we had planned to start a new
project, creating a Python tool set for the use with Finesse. This project [PyKat] is
under development now.

PyKat is a free Python interface and set of tools to run Finesse. It has been used by
us to perform and document a series of simulations started during the Commissioning
Workshop at the LIGO detector in Louisiana in 2013. The results are collected in the
document ‘Comparing Finesse simulations, analytical solutions and OSCAR simulations
of Fabry-Perot alignment signals’, freely available online: http://arxiv.org/abs/1401.
5727. The PyKat and Finesse files used to perform the simulations reported are included
as an example in the PyKat package (pykat/examples/asc test).

If you want to try out PyKat, see http://www.gwoptics.org/pykat/. The project is
still in an early stage and very actively developed at the moment. We welcome all kinds
of ideas, suggestions and contributions.

151

http://arxiv.org/abs/1401.5727
http://arxiv.org/abs/1401.5727
http://www.gwoptics.org/pykat/

Chapter 7 Advanced Usage

7.2 FINESSE and MATLAB (Octave1)

MATLAB has become a quasi standard tool for solving numerical analyses in many areas
of science, for example, the interferometer design and commissioning of gravitational wave
detectors utilises MATLAB in various ways. For convenience and consistency it is helpful
to provide interfaces between Finesse and MATLAB.

There are the following three main ways to use Finesse with MATLAB (or Octave):

• plotting via the automatically generated MATLAB function: running a Finesse
simulation provides a number of output files, one of which is a MATLAB *.m file
containing a function. This function can be called from MATLAB to automatically
plot and/or load the simulation output. See Section 2.6 for more details on the
usage of these files.
• running Finesse simulations from the MATLAB command window: A set of MAT-

LAB functions, called SimTools is available from the Finesse download page. The
functions should enable you to read, change and write Finesse input files from
within MATLAB, as well as to start a simulation and read in the output data, see
section 7.2.1.
• Communicating directly with a running Finesse process from within MATLAB:

Finesse can be used in a client-server mode, in which a MATLAB client can talk
via an internet (TCP/IP) connection to the Finesse process, see section 7.2.2.
This is the most powerful method for using Finesse with MATLAB as it is not
restricted to the usual ‘xaxis’ tuning style but can be used for entirely different
types of simulation tasks, such as tolerancing which is part of many commercial
packages.

7.2.1 SimTools

Triggered by similar work by Seiji Kawamura and Osamu Miyakawa, I started to use
Octave to post-process the output data of Finesse. In the course of the Virgo commis-
sioning activity, Gabriele Vajente then developed a set of simple scripts that automate
certain computation tasks nicely. During the design process for second generation gravi-
tational wave detectors the simulation tasks became more complex still and I needed to
improve the automation of tasks further. Therefore, I have started to provide a consistent
set of MATLAB functions, called SimTools [SimTools], that can be used to read, write,
edit and execute Finesse input files. By now the SimTools includes a great number of
utility functions to read, write and parse any text based simulation input file but also
optics function, from FFT propagation to ABCD matrix computations2. We have made

1 Octave is a GNU software package similar to MATLAB. The examples shown here can often be used
with both programs, maybe after some small changes. I have not tested any of the files for such
compatibility though.

2 It should be notes that the SimTools package is far from an elegant solution, it has grown historically
from a set of utility scripts and in particular the parsing of text is a workaround. It has proven to be
very useful but is difficult to maintain. Eventually I would like to rewrite this as a Python package,

152

7.2 Finesse and Octave/Matlab

extensive use of SimTools for the processing and use of mirror surface maps.

The basic idea behind SimTools is to separate Finesse input files logically into smaller
parts which can be handled separately. Many of the SimTools functions deal with reading
and parsing of Finesse input files. The two main elements of the text parsing are text
lines and text blocks. The latter are identified by a special comment in the input file, for
example, the following creates a block with the name ‘cavity’:

%%% FTblock cavity

m m1 0.9 0.1 0 n1 n2 # mirror m1 with R=0.9, T=0.1, phi=0

s s1 1200 n2 n3 # space s1 with L=1200

m m2 0.8 0.2 0 n3 n4 # mirror m2 with R=0.8, T=0.2, phi=0

%%% FTend

The SimTools function can be used to recognize, read and edit such blocks. The following
example code should give you a first idea on how this can be used:

% name of kat file which contains ’blocks’

inname=’testconsts.kat’;

% read in block from testblock.kat

block=FT_read_blocks_from_file(inname);

myblock=FT_copy_block(block,’constants’);

% print reflectivies

r1=FT_read_constant(myblock,’Rm1’);

r2=FT_read_constant(myblock,’Rm2’);

disp(sprintf(’Reflectivities of m1 and m2: %f %f’,r1,r2));

% now we change the reflectivity for one of m

myblock=FT_write_constant(myblock,’Rm1’,0.7);

SimTools are developed independently from Finesse itself and therefore will not be de-
scribed in detail in this manual. Please download the SimTools package from the Finesse
download page for more information.

7.2.2 Client-Server mode of FINESSE

The Linux and Mac OS X versions of the Finesse binary can be started in a so-called
servermode by calling the program with:

kat --server <portnumber (11000 to 11010)> [options] inputfile

The port number can be chosen by the user, the other options may be any of the usual
options for calling Finesse. Also, the input file can be any unchanged input file. For
example, we might load the file bessel.kat with

kat --server 11000 bessel.kat

using a more consistent approach.

153

Chapter 7 Advanced Usage

The input file will then be read and pre-processed as usual but instead of actually per-
forming the simulation task (i.e. running along the xaxis) Finesse will become idle and
listen to incoming TCP/IP connection via the user-defined port (11000 in this example).

�������

���

��

������������������������������

���
���
��
���
���������

��
��������

������

�����������������������

���������������������

for i=0:100
 x=I*0.9
 out(i)=m2kat(x)
end

���� ����������

�������������������������������

��������������������������������

���������������������������

��������������������������������

�������������������������������

�����������������������

Figure 7.1: This sketch illustrates how the communication between Finesse and MAT-
LAB/Octave would work in a simple example. Finesse loads an input file and then
becomes idle until a ‘katconnect’ command from a MATLAB session opens a TCP/IP
connection. Then the ‘m2kat’ command can be used to send or receive data over
the connection. Typically ‘m2kat’ is first used to specify which data is transferred
(CONFIG) and then is used again to send and receive numerical data (TUNE). After
the simulation task, the command ‘katdisconnect’ must be used to close the TCP/IP
connection again.

A MATLAB/Octave client can then send commands via TCP/IP to Finesse, see Fig-
ure 7.1. This works by three new MATLAB functions (from source files which need to
be compiled first, see below):

• katconnect: establishes a connection with the Finesse server
usage: socket=katconnect(’server’, port (11000-11010))

where ‘server’ is the network address of the server (use ‘localhost’ if you do all this
locally on the same computer) and ‘port’ the port number chosen when starting the
Finesse server. ‘socket’ will return the index of the opened socket.
• katdisconnect: closes a connection with the Finesse server

usage: katdisconnect(socket)

with ‘socket’ the socket number received with the ‘katconnect’ command.
• m2kat: performs all communications through the TCP/IP connection This com-

mands can
– set a certain parameter to a new numeric value
– receive the value of a parameter

154

7.2 Finesse and Octave/Matlab

– receive output data, for example, the photodiode outputs.
‘m2kat’ has three different usage modes, these are chosen automatically depending
on the specified input and output arguments:
usage:

CONFIG:

[number_of_outputs]=m2kat(socket, number_of_parameters, ’parameter string’)

send parameter names to be tuned and get number of output data values

or

TUNE:

[output_data] = m2kat(socket, number_of_outputs, parameter_values)

send parameter values and get output data

or

INFO:

[output_data] = m2kat(socket, number_of_parameters)

get current values of parameters defined by a previous call of

m2kat

The CONFIG mode is required in advance of TUNE or INFO commands. The
CONFIG command tells the server which parameters of the interferometer will be
set or polled in the following session. With a TUNE command one can set new
numerical values to these parameters, whereas an INFO command would return
their current numerical values. A TUNE command would also return one output
data point, i.e. one numerical value for each output specified in the input file. The
usage of ‘m2kat’ is a bit complex and sensitive to mistakes. It therefore requires
a careful preparation of the MATLAB client script. Please look at the provided
example for further guidance.

Example MATLAB client file This example recreates a normal Finesse simulation by
tuning one parameter and printing the output.

%%%

%

% m2katexample.m MATLAB Script for testing the MATLAB-to-Finesse

% functions katconnect, m2kat and katdisconnect

%

% Version 1.0

%

% Andreas Freise adf@star.sr.bham.ac.uk

% 29.09.2006

%

%--

%

% The socket connection does not do any error checking

% in order to get maximum speed. Therefore you have to

% follow precisely the correct procedure outlined below:

%

% 0. start a Finesse server (somewhere). For example,

% on you linux computer cp1.aei.mpg.de you could do:

155

Chapter 7 Advanced Usage

% kat --server 11000 cavity1.kat

% which reads and initialises the simulation specified in cavity1.kat

% and then waits for a TCP/IP connection on port 11000

%

% 1. open a socket with

% ’socket=katconnect(servername, portnumber)’

% with

% - ’servername’ being a full DNS name, e.g. cp1.aei.mpg.de, of the

% computer which runs the Finesse server

% - ’portnumber’ a number between 11000 and 110010 (the

% same portnumber used by the server)

%

% 2. define a list of parameters to be tuned as a string.

% The string must consist of pairs of names:

% parameterlist=’componentname1 parametername1 componentname2 parametername2 ...’

% e.g. parameterlist=’mirror1 phi’

%

% 3. Send a ’CONFIG’ command to the Finesse server with:

% nout=m2kat(socket,noparams,parameterlist)

% with

% - ’socket’ the socket number

% - ’noparams’ the number of parameters (number or word pars in ’parameterlist’)

% - ’parameterlist’ the string described above

% - ’nout’ the number of values that the server will return for

% each computation

%

% Now the server ready and waits for numeric input.

%

% 4. Send ’TUNE’ commands to the server. A TUNE command is followed

% by a number of input values and returns computation results

% from the server:

% data=m2kat(socket,nout,[inputvalues]);

% with

% - ’socket’ the socket number

% - ’nout’ the number of expected values being returned from the

% server

% - ’[inputvalues]’ the parameter values, i.e.a vector of double

% values, representing the new value the respective parameter

% shall be tuned to. The first number refers to the first

% parameter in ’aprameterlist’, etc.

% - ’data’ being the result, a vector of doubles (the size of the

% vector is given in ’nout’ and is determined by the number of

% detectors or other outputs specified in the Finesse input

% file, e.g. cavity1.kat

%

% 5. Now you can send as many TUNE commands as you like by calling

% repeatingly ’m2kat’.

%

% 6. You can send a CONFIG command again, if you like to start

% tuning different parameters at some point

156

7.2 Finesse and Octave/Matlab

%

% 7. When you have finished, it’s important to close the socket

% with

% katdisconnect(socket)

%

%

%%%

% server name and portnumber

hostname=’localhost’;

port=11000;

% parameter(s) to be tuned

noparams=2; % number of parameters

parameterlist=’m1 phi m2 phi’; % list of parameters

% defining the x-axis

N=20001;

min=-10;

max=180;

x=linspace(min,max,N);

%%%%%%%%%%%%%%%%%%%%%%%%

% Variables for progress display

max_calls=N;

curr_call=0;

call_range=round(N/100.0)+1;

last_print=0;

%%%%%%%%%%%%%%%%%%%%%%%%%

tic

% opening socket

socket=katconnect(hostname,port);

if (socket>0)

% send CONFIG command and parameter list

nout=m2kat(socket,noparams,parameterlist);

if (nout>0)

% prepare matrix for output data

out=zeros(N,nout);

% run along xaxis

disp(sprintf(’ \n’));

disp(sprintf(’ \n’));

for i=1:N

% compute one data point

out(i,:)=m2kat(socket,nout,[x(i),0.0]);

% compute and print progress

curr_call=curr_call+1;

last_print=last_print+1;

if (last_print>=call_range)

157

Chapter 7 Advanced Usage

disp(sprintf(’\b\b\b\b\b\b\n%3d%%’,round(100*curr_call/ ...

max_calls)));

last_print=0;

end

end

end

end

disp(sprintf(’\b\b\b\b\b\b\n100%% -- Complete!\n’));

toc

% send QUIT command and close socket

katdisconnect(socket);

% plot result

plot(x,out);

−50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7.2: Graphical output of the example script demonstrating the communication
between MATLAB and Finesse running in server mode.

The terminal output of Finesse during the example above would look similar to this:

moon:~/work/kat/test/m2kat$ kat --server 11000 cavity1.

--

FINESSE 0.99.7 (build 3227)

o_.-=. Frequency domain INterferomEter Simulation SoftwarE

(\’".\| 03.07.2008 A. Freise (afreise@googlemail.com)

.>’ (_--.

_=/d ,^\ Input file cavity1.kat,

~~ \)-’ ’ Output file cavity1.out,

/ | Gnuplot file cavity1.gnu

’ ’ Wed Jul 9 11:33:04 2008

--

158

7.2 Finesse and Octave/Matlab

*** cmd_process: processing [0]...done.

*** listen: listening on port 11000

*** cmd_process: processing [0]...done.

*** cmd_process: processing [0]...done.

*** cmd_process: processing [0]...done.

*** listen: accepted a connection from 127.0.0.1:-2491

*** listen: num connections = 1

*** receivecommands: processing CONFIG command

Number of Parameters = 2

Read parameter list: m1 phi m2 phi

*** receivecommands: received 2 parameters

*** receivecommands: processing quit command

*** listen: num connections = 0

*** cmd_process: processing [0]...done.

The first line starts Finesse in server mode, the banner is printed and Finesse starts to
‘’listen’ for incoming TCP/IP connections. It then accepts a connection from IP number
127.0.0.1 (this means the MATLAB client I am using runs on the same computer). The
following lines acknowledge the receipt of a ’CONFIG’ command. The following ‘TUNE’
commands do not produce any terminal output. During this example run MATLAB
would produce terminal output as follows:

>> m2katexample

*** Creating Socket ...

*** server name is localhost

*** server internet name is localhost

*** connecting to localhost

*** Socket 9 opened!

*** CONFIG: OK

100% -- Complete!

Elapsed time is 0.449107 seconds.

Closing socket 9 Done!

>>

The graphical output of course depends on the details of the finesse input file. Figure 7.2
shows the output of this example.

Compiling the Client programs

The programs are scripts that run in MATLAB and Octave. For simplicity I do not
provide binary versions of these, however, they are very easy to compile.

159

Chapter 7 Advanced Usage

Compiling in MATLAB The MATLAB client consists of a number of C source files
which have to be compiled with the MATLAB compiler. The files are:

katconnect.c : create TCP/IP connection with server

katdisconnect.c : break TCP/IP connection

m2kat.c : send commands to and receive data from server

m2kat.h : include file for m2kat.c

These files can be compiled from within MATLAB with the mex command. For example,
on a Macintosh the command (used inside the MATLAB command window)

mex katconnect.c

will create the binary file ‘katconnect.mexmaci’. Once this file exists you can call katconnect
or do katconnect just like with any MATLAB command. Please compile the three files
‘katconnect’, ‘katdisconnect’ and ‘m2kat’ and keep all files, source and binary, in a direc-
tory where MATLAB can find them.

Compiling in Octave The compilation from Octave works exactly as above. You can
use the ‘mex’ command from Octave with the same source files. The only difference is
that that the mex command in Octave will create ‘*.o’ and ‘*.mex’ files storing the binary
commands.

160

Appendix A

Tutorial for setting up and locking a cavity

This sections is an attempt to records a step-by-step description of how to develop a
Finesse input file for a cavity lock from scratch. The tutorial has been given during the
meeting of the GEO 600 simulation group on the 13.03.2007 in Hannover.

A.1 The Basics

We assume that we know some data about the cavity from previous calculations and
create the respective input file:

• laser: λ = 1064 nm, P = 1 W, w0 ≈ 1 mm
• cavity input mirror: flat, R = 0.9
• cavity end mirror: RC = 1 m, R ≈ 1
• cavity length: L = 0.8 m

l laser 1 0 n1

gauss beam1 laser n1 1m 0

s s1 1 n1 n2

m m1 0.9 0.1 0 n2 n3

s sL 0.8 n3 n4

m m2 1 0 0 n4 dump

maxtem 0

pd cavpower n4

xaxis m1 phi lin -10 10 300

This basic syntax can be found in the example files that come with Finesse. In addition
you can always use the help page with kat -h.

Now for the curvature of the end mirror. It is always tricky to understand how the sign
of the curvature is defined. We type kat -hh to get some information from the second
help page (there are exactly two):

** Geometrical conventions:

tangential plane: x, z (index n), saggital plane: y, z (index m)

161

Appendix A Tutorial for setting up and locking a cavity

xbeta refers to a rotation in the x, z plane, i.e. around the y-axis

R<0 when the center of the respective sphere is down beam

(mirror: node1 -> node2, beam splitter: node1 -> node3)

beam parameter z<0 when waist position is down beam

Thus in this case the radius of curvature for m2 is defined positive and we add attr m2 Rc

1. Please note that this definition depends directly on the order in which the node names
are given. For example, if we change the line for the end mirror to

m m2 1 0 0 dump n4

the curvature would have to be set as −1 m.

In Gerhard Heinzel’s thesis we can find many useful equations for two mirror cavities.
From these we expect the circulation light power to be ≈ 4/T = 40 W. But running the
current file we obtain only P < 0.1 W. Something is wrong. Maybe we must we set maxtem
higher? Trying that we obtain:

maxtem 0 2 4 12
power [W] 0.01 0.04 0.12 2.6

So, what’s wrong? We are not mode-matched, OK, but it seems like we are not converging
with higher mode numbers either. The answer is that we are not using the right base
set for the TEM modes. In that case not only the amplitudes but also the phases of
the higher order modes play important roles in creating the cavity resonance. Very many
higher order modes are required to obtain correct results for a cavity without an optimised
set of base modes. If all possible you should use the cavity eigenmodes.

In order to switch the beam parameters to the cavity eigenmodes we can use the cav

command:

cav cav1 m1 n3 m2 n4

This will automatically compute the cavity eigenmodes and use those as for computing
the cavity fields.

With the cav command we obtain a power of 14.66 W independent of the settings for
maxtem. Looks much better. How can we now modematch the laser beam to the cavity?
The most simple way is to omit the gauss command. This will tell Finesse to trace the
cavity mode back to the laser and assume that as the correct mode for the input beam.
With that we get a power of 37.97 W, again independent of the maxtem value. That is
good enough for a first check (the 40 W computed above where an approximation).

No we can ask ourselves what would have been the correct beam parameter at the laser
for a modematched beam? We can find out using the trace command. The help pages
(kat -hh) tell us:

** trace n: ‘n’ bit coded word, the bits give the following output:

trace 1: list of TEM modes used

trace 2: cavity eigenvalues and cavity parameters like FWHM,

FSR optical length and finesse

trace 4: mode mismatch parameters for the initial setup

162

A.2 Creating the error signal

trace 8: beam parameters for every node, nodes are listed in

the order found by the tracing algorithm

trace 16: Gouy phases for all spaces

trace 32: coupling coefficients for all components

trace 64: mode matching parameters during calculation, if they

change due to a parameter change, for example by

changing a radius of curvature.

trace 128: nodes found during the cavity tracing

We run the file again, adding the command trace 8 to the file and obtain the following
text output:

--- tracing the beam through optical system,

found 4 of 5 nodes:

(w0 : waist radius, w : beam radius, z: distance to waist,

z_R: Rayleigh range, q : complex beam parameter

and gamma: far field angle

0: node n3(2); m1(0), sL(3); n=1 (m1 --> n3)

x, y: w0=368.06615um w=368.06615um z=0m z_R=400mm

q=0.4i gamma=920.16536urad

1: node n4(3); sL(3), m2(1); n=1 (sL --> n4)

x, y: w0=368.06615um w=823.02092um z=800mm z_R=400mm

q=(0.8 + 0.4i) gamma=920.16536urad

2: node n2(1); m1(0), s1(2); n=1 (m1 --> n2)

x, y: w0=368.06615um w=368.06615um z=0m z_R=400mm

q=0.4i gamma=920.16536urad

3: node n1(0); s1(2), laser(4); n=1 (s1 --> n1)

x, y: w0=368.06615um w=991.04843um z=1m z_R=400mm

q=(1 + 0.4i) gamma=920.16536urad

This shows the beam parameters at every node. Please remember that the sign of z
depends on the direction indicated by the arrow: component rightarrow component.

We find the right beam parameter at the node n1 to be: w0 =0.4 mm and z0 = −1 m.
We test this using gauss beam1 laser n1 .4m -1 and maxtem 0. In this case the cavity
eigenmodes are used within the cavity and the explicitly given laser mode outside the
cavity. Again we get a power of 37.7 W, we are mode-matched.

A.2 Creating the error signal

The FSR of the cavity is given as c/2L = 187.5 MHz. FWHM should be about 3 MHz
(as the finesse is 2π/T ≈ 60).

We chose a modulation at 30 MHz and change the file to

s s1 .5 n1 n1a

mod eom1 30M 0.3 1 pm n1a n1b

s s2 .5 n1b n2

163

Appendix A Tutorial for setting up and locking a cavity

We want to detect the signal in reflection. It is useful to remember that the following
simulation leads to a very boring plot:

pd refpower n2

xaxis m1 phi lin -90 90 300

BTW the result is not equal to 1 since we don’t include all the sidebands created by the
modulator. You can try to use the modulator with more higher orders:

mod eom1 30M 0.3 5 pm n1a n1b

and you’ll recover the lost laser power.

To see an error signal in reflection we need to demodulate the photo-current. We try
rather arbitrarily demodulation phases 0 and 90 deg:

pd1 ref1 30M 0 n2

pd1 ref2 30M 90 n2

and obtain:

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-80 -60 -40 -20 0 20 40 60 80

A
bs

phi [deg] (m1)

tut-lc2 Tue Mar 13 00:20:58 2007

ref1 n2 : ref2 n2 :

which looks like a proper PDH signal.

Further optimization works better using a transfer function. To create a transfer function
we need to add a signal (at the mirror we have been tuned before). Furthermore we need
to use a pd2 detector and sweep the frequency with the xaxis command

fsig sig1 m2 100 0

pd2 ref2 30M 0 1 n2

xaxis sig1 f log 10k 10M 300

put ref2 f2 $x1

The put command is required to sweep the demodulation frequency of the phot detector
in sync with the signal frequencies (all parameters in Finesse are independent of each
other. You need to use put and maybe func commands to link them if necessary).

164

A.3 Forming the locking loop

This yields the typical low-pass transfer function of a cavity. The DC limit represents the
optical gain of the cavity system. We can optimise the gain by tuning the demodultion
phase (of the modulation frequency). To do se we chose a low frequency for the signal
(1 Hz as we already did). Then we use the xaxis command to tune the demodulation
phase:

xaxis ref2 phi1 lin 0 180 300

The maximum signal corresponds to a demodulation phase of 167 deg.

We can also see that the optical gain is equal to ≈ 22 and the unit is [W/rad].

For the lock command (see below) we need to know the optical gain in [W/deg]. The
conversion factor can be computed as follows: 360 degrees correspond to a movement of
one wavelength. Equally 2π [rad] refer to one wavelength. Thus 1 W/rad= 2π/360 W/deg
and we obtain an optical gain of ≈ 0.4 W/deg. To test this we can go back to a pd1

photodetector (now using the optimised demodulation phase of 167 deg). Again we move
the tuning of m2 with the xaxis. To compute the slope we can use the diff which can
performa differentiation:

diff m2 phi

and obtain the gradient of the error signal. Since the tuning with xaxis is in [deg] the
resulting units are [W/deg]. The slope in the oprating point (phi=0) is about 0.4 as
expected.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-10 -5 0 5 10

A
bs

phi [deg] (m1)

tut-lc4 Thu Mar 22 01:05:58 2007

 n2 :

A.3 Forming the locking loop

The photodiode above crates the required error signal. The lock command can be used
to perform an iterative loop using such an error signal. To do so we first need to access

165

Appendix A Tutorial for setting up and locking a cavity

the signal through a variable. We use the set command to do so:

pd1 ref1 30M 167 n2

set err ref1 re

This defines a new parameter err which is linked to the real part of the output signal
of photodetector ref1. Thus we have the (optimised) error signal available in err Next
we can create the feedback signal and connect it to the system. The feedback signal is
created by the lock command and then can be fed to the position (tuning) of m2 with a
put command:

lock fb $err -2 1m

put m2 phi $fb

The lock command required two numeric parameters: the gain and accuracy of the loop
(please look up the syntax of the lock command in the manual). The gain in the lock

command should be −1/(opticalgain). Thus we set it to −1/0.4 ≈ −2. We will discuss
the accuracy below and arbitrarily set it to 1/1000.

To test this we move m1:

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

A
bs

phi [deg] (m1)

tut-lc5 Thu Mar 22 01:12:31 2007

ref1 n2 : fb :

We see that m2 follows the tuning of m1 and the error signal held below 1 mW. The
accuracy refers to error signal but with the optical gain we can also compute the residual
noise in terms of mirror motion. We know that 1 W refers to 1/22ṙad and 1 rad refers to
a motion of λ/(2π). Thus we get an accuracy of 45µrad or 7 pm.

It is important to start all tunings in or close to the operating point (all tunings equal to
zero). Also the step size must be small enough the remain always close to the operting
point. Otherwise the lock will fail.

Another test: we can misalign m2:

xaxis m2 xbeta lin 0n 6u 200

166

A.3 Forming the locking loop

(Do not forget to use at least maxtem 1 with this). This yields:

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 1e-06 2e-06 3e-06 4e-06 5e-06 6e-06

A
bs

xbeta [rad] (m2)

tut-lc6 Thu Mar 22 01:14:28 2007

ref1 n2 : fb :

And this is the file for the locked cavity with the commands set for the last test above:

l laser 1 0 n1

s s1 .5 n1 n1a

mod eom1 30M 0.3 1 pm n1a n1b

s s2 .5 n1b n2

m m1 0.9 0.1 0 n2 n3

s sL 0.8 n3 n4

m m2 1 0 0 n4 dump

attr m2 Rc 1

maxtem 1

pd1 ref1 30M 167 n2

set err ref1 re

lock fb $err -2 1m

put m2 phi $fb

xaxis m2 xbeta lin 0 6u 200

cav cav1 m1 n3 m2 n4

gnuterm pdf

167

168

Appendix B

Shot-noise limited sensitivity of GEO 600

This section records Finesse simulations from 2007 which were undertaken to investigate
the shot-noise limited sensitivity of the GEO 600 detector. As it turns out the calculation
of the sensitivity contains a fair number of factors of 2 and

√
2, leading to potential

confusion when comparing results. Also the GEO detector using a heterodyne read-out
scheme at that time required a slightly more complicated shot-noise computation than
that given in the usual textbooks. As a result our models of the GEO 600 shot-noise did
not match the measured sensitivity exactly. This appendix and Section 6.2 report on
the effort to validate the shot-noise model used by Finesse and to demonstrate how to
correctly derive the shot-noise limited sensitivity. The plots in Figure B.4 show that the
here derived shot-noise model correctly matches the measured data.

Note that this chapter contains old results which are not entirely correct!
During the implementation of the new qshot and qnoised detectors in 2013 we found
that the comparison below contains one error: the correction factor of the shot noise for
the presence of RF sidebands in this case varies between

√
3/2 and

√
2 depending on

the demodulation phase [Meers, Niebauer]. However in the comparison below only
√

2 is
used regardless of the phase. Thus the sensitivity plots shown in figure B.1 are a factor
of
√

3 worse than they should be. This went unnoticed because of a bug with the original
qshot detector. Running these example files with Finesse 2.0, using the new qshot

and qnoised detectors, will provide the correct result. Note that comparison with the
measured data did not show this problem because the wrong factor affected mostly the
low-frequency part and not the high-frequency part where GEO’s sensitivity is shot-noise
limited. We have decided to keep the this chapter unchanged in order to keep
a record of past results and of the bug in the qshot detector.

B.1 The qshot command (before Finesse 2.0)

Early versions of Finesse were able to compute only a very approximative shot noise
level using the Schottky equation. The current version of Finesse features a new com-
mand qshot which provides a more accurate approximation of the shotnoise in a certain
photo diode signal. The qshot command can correctly compute the shotnoise level in
the presence of a number of modulation sidebands and in the absence of squeezing and

169

Appendix B Shot-noise limited sensitivity of GEO 600

radiation pressure effects. Details of the implemented algorithm have been collected in a
paper [Harms].

B.2 Comparing the different methods

The following shows how to use the Finesse syntax correctly to compute the shot-noise
limited sensitivity of GEO 600; it explains step by step how the apparent strain is com-
puted from the transfer function end-mirror motion −→ detector output (T) and the
amplitude spectral density

√
SP associated with shot-noise1. Six extracts from Finesse

input files will be shown below, each demonstrating a correct but slightly different method
to obtain a shot-noise limited sensitivity. The first method is as follows:

method 1

adding differential displacement to the end mirrors

fsig sig1 MCN 1 0

fsig sig2 MCE 1 180

compute Schottky noise

shot noise nMSR2

noplot noise

set sn1 noise re

now we apply correction factors for a) the mixer and b) possible noise

correlations the latter is between sqrt(1.5) and sqrt(2)

func sn2 = $sn1 / sqrt(2) * sqrt(2) # or sqrt(1.5) see labbook page 3911

noplot sn2

compute transfer function Delta_L -> DF

pd2 pdMI $fMI max 1 nMSR2

noplot pdMI

set tr1 pdMI abs

note until the newsest finesse version 040207 ’abs’ actually above

produces abs^2 !!

#convert transfer function from W/rad into W/m

func tr2 = 2* $pi / 1064.0E-9 * $tr1

noplot tr2

compute apparent strain as h=2 Delta_L/L and

apparent_Delta_L = shotnoise/transfer_function

func h = 2 /1200 * $sn2 / ($tr2 + 1E-12)

xaxis sig1 f log 10 10k 300

put pdMI f2 $x1

1 Note that GEO 600 has folded arms with the folding mirrors called ‘far’ mirrors. The displacement
should be injected at the ‘central’ end mirrors. If the ‘far’ mirrors are used the effect is amplified by a
factor two due to the double reflection which must be corrected manually.

170

B.2 Comparing the different methods

The method above is the most explicit and relies on several manual conversions and
corrections which are apllied via func commands. The correction and conversion factors
are:

a) the shotnoise is first divided by
√

2 to simulate the effect of the mixer, see Sec-
tion 3.4.6.

b) then the shotnoise is multiplied by
√

2. This is a upper limit for the noise increase
due to the heterodyne type measurement.

c) The transfer function is computed by Finesse as W/rad and must be converted
into W/m by mulitiplication with 2π/λ, see Section 6.2.1.

d) Shotnoise can then be converted into apparent displacement noise by dividing it
by the transfer function:

√
S∆L =

√
SP /T . It is important to understand what we

mean by ∆L, namely the position change of each end mirror. Consider again the
computation of the transfer function: We inject a signal with amplitude x to both
end mirrors and compute the signal amplitude on the output photodiode; i.e. if,
for example, any noise source would create exactly this amplitude on the diode the
apparent displacement would correspond to a motion of each mirror by x. Thus
the transfer function refers to ∆L as the arm length change of one individual arm.

e) With this definition of ∆L we know from Martin’s thesis [Hewitson04] that the
apparent strain sensitivity computes as h = 2∆L/1200. In the code the last two
computations have been merged into h = 2

√
SP /(1200 T).

The following code repeats the above in a slightly more compact form:

method 2

The same as above a bit more compact:

fsig sig1 MCN 1 0

fsig sig2 MCE 1 180

pdS2 pdMI $fMI max 1 max nMSR2

noplot pdMI

set sens1 pdMI abs

func sens2 = $sens1 / 600 * 1064.0E-9 / (2* $pi)/ sqrt(2) * sqrt(2)

xaxis sig1 f log 10 10k 300

put pdMI f2 $x1

We can also apply the signal frequencies to the spaces (this simulates GW signals) This
feature is less well tested than fsig connected to mirrors but it provides a good redundant
check on the result above:

method 3

fsig sig1 snorth1 1 0

fsig sig2 snorth2 1 0

fsig sig3 seast1 1 180

fsig sig4 seast2 1 180

171

Appendix B Shot-noise limited sensitivity of GEO 600

pdS2 pdMI $fMI max 1 max nMSR2

noplot pdMI

set sens1 pdMI abs

func sens2 = $sens1 / sqrt(2) * sqrt(2)

xaxis sig1 f log 10 10k 300

put pdMI f2 $x1

Instead of the Schottky formula we can use the qshot detector which includes the effects of
the RF modulation. Thus, we do not apply an extra the ’correction factor’ for modulation
sidebands (

√
2 in the example above) nor the 1/

√
2 for the demodulation by the mixer:

method 4

fsig sig1 MCN 1 0

fsig sig2 MCE 1 180

compute shotnoise

qshot qnoise 2 $fMI max 1 max nMSR2

noplot qnoise

set qn1p qnoise re

now compute the linear spectral desnity i.e.

noise = sqrt (qshot * h * f0)

func qn2p = sqrt($qn1p * 6.6262E-34 * 299792458.0 / 1064E-9)

noplot qn2p

compute transfer function Delta_L -> DF

pd2 pdMI $fMI max 1 max nMSR2

noplot pdMI

set tr1p pdMI abs

convert transfer function from W/rad into W/m

func tr2p = 2* $pi / 1064.0E-9 * $tr1p

noplot tr2p

compute apparent strain as h=2 Delta_L/L and

apparent_Delta_L = shotnoise/transfer_function

func hp = 2 /1200 * $qn2p / ($tr2p + 1E-12)

xaxis sig1 f log 10 10k 300

put pdMI f2 $x1

put qnoise f2 $x1

Or using qshotS:

method 5

The same as above a bit more compact:

fsig sig1 MCN 1 0

fsig sig2 MCE 1 180

qshotS pdMI 2 $fMI max 1 max nMSR2

set s1 pdMI abs

172

B.3 Computing the shot-noise-limited sensitivity of GEO

compute sens in m/sqrt(Hz)

const c 299792458.0

const h 6.6262E-34

func s2 = 1064.0E-9 / 2 /$pi * $s1 * sqrt($h * $c / 1064E-9)

noplot s2

compute h in 1/sqrt(Hz)

func s3 = 2/1200 * $s2

noplot pdMI

xaxis sig1 f log 10 10k 300

put pdMI f2 $x1

Or using displacement and qnoiseS and the scale command:

method 6

fsig sig1 MCN 1 0

fsig sig2 MCE 1 180

qshotS pdMIS 2 $fMI max 1 max nMSR2

set s1 pdMIS abs

noplot pdMIS

func s3 = 2/1200 * $s1

scale qshot:meter s3

xaxis sig1 f log 10 10k 300

put pdMIS f2 $x1

The good news is that these methods agree with each other, see Figure B.1. Furthermore
they also agree well with the measured sensitivity, see next section.

B.3 Computing the shot-noise-limited sensitivity of GEO

First we measured the light power in the south port (just after MSR) to be the same as
the measured 43 mW, and tune the Finesse file accordingly

#l i1 3.2 0 nMU3in1 # nominal S5 corrsponds to 75deg

l i1 3 0 nMU3in1 # tuned down from 3.2 to get right

power in DF

The following analysis has used the ’typical S5 sensitivity’ from the GEO sensitivity
webpage (http://www.geo600.uni-hannover.de/geocurves/) as a reference. The re-
spective data has been taken on 03.06.2006.

We now need to tune the demodulation phase for the P and Q channel of the dark fringe
output signal. This is important to compare the simulation with measured data correctly.
The optical gain is modelled for the data analysis (h reconstruction) with a simple transfer
function represented by a gain, a complex pole and a real zero. The numerical values for
these parameters on the 03.06.2006 for the P and Q channel respectively can be found on

173

http://www.geo600.uni-hannover.de/geocurves/

Appendix B Shot-noise limited sensitivity of GEO 600

10
1

10
2

10
3

10
−22

Frequency [Hz]

S
ho

tn
oi

se
−

lim
ite

d
S

en
si

tiv
ity

 [1
/s

qr
t(

H
z)

]

Schottky, displacement, pd2 (max), correction factor sqrt(2)
Schottky, displacement, pd2S (max), correction factor sqrt(2)
Schottky GW signal, pd2S (max), correction factor sqrt(2)
qshot (max), displacement, pd2 (max)
qshotS (max) displacement
qshotS (max) scale qshot:meter, displacement

Figure B.1: The sensitivity plots here are a factor of
√

3 worse than is correct,
see the beginning of this chapter for more details. Shot-noise-limited sensitivity
of GEO 600 as computed with Finesse. The plot compares the six different methods
to compute a shotnoise-limited sesnitivity mentioned in the text: Method 1 and 2
use fsig to inject differential displacement noise to the near end mirrors; the difference
lies only in how the conversion into apparent strain is performed. Method 3, however,
uses fsig to add simulated gravitational-wave signals to the lengths between the far
and central mirrors.Method 4 employs the new qshot detector. This detector makes
use of a new algorithm to take into account the effects of modulation sidebands on the
shotnoise level. Method 5 and 6 also make use of the qshot detector but include
some automatic scaling and conversion of the result. The small difference between the
methods using the qshot detector to the first three methods comes from the fact that
the applied correction of

√
2 in methods 1 to 3 is only approximate.

the GEO summary pages http://www.geo600.uni-hannover.de/georeports/. From
these parameters we can reconstruct approximately the optical gain of the detector for
the reference time.

Now, we can simulate the optical gain with Finesse and tune the demodulation phase
such that we obtain the same transfer function. For one set of demodulation phases the
input file uses the following commands:

fsig sig1 MCN 1 0

fsig sig2 MCE 1 180

174

http://www.geo600.uni-hannover.de/georeports/

B.3 Computing the shot-noise-limited sensitivity of GEO

101 102 103 104
101

102

f [Hz]

Ab
s

Finesse p
Finesse q
pgain
qgain

Figure B.2: comparison of the optical gains for the P and Q channel of the dark fringe
output signal. The plot shows the transfer functions reconstructed from the parameters
given on the GEO summary webpage for the 03.03.2006 and the simulated transfer
function for demodulation phases of 4 and 101 degrees.

102 103
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

M
ag

ni
tu

de
 [a

.u
.]

p weight
q weight

Figure B.3: Weights for P and Q quadrature.

compute transfer function Delta_L -> DF

pd2 pdMI1 $fMI 4 1 nMSR2

pd2 pdMI2 $fMI 101 1 nMSR2

xaxis sig1 f log 10 10k 300

put pdMI1 f2 $x1

put pdMI2 f2 $x1

175

Appendix B Shot-noise limited sensitivity of GEO 600

102 103
10!22

10!21

Frequency [Hz]

h
[1

/s
qr

t(H
z)

]

Typical S5 sensitivity
Finesse using Schottky (no correction factor)
Finesse using qnoise (P quadrature)
Finesse using qnoise (Q quadrature)
Finesse using qnoise (P+Q with weights)

Figure B.4: Typical S5 sensitivity compared to the Finesse computation of the shot-
noise-limited sensitivity.

Figure B.2 shows a comparison of the transfer function reconstructed from the parameters
given on the webpage with the simulated transfer function for demodulation phases of
4 and 101 degrees. The resulting comparison of the Finesse model with the measured
GEO 600 sensitivity is shown in Figure B.4.

176

Appendix C

Realistic thermal distortions in Advanced
LIGO arm cavities

In the last few years Finesse has undergone extensive development to include the effects
of mirror surface distortions. The application of map surfaces has grown from a very basic
integration routine (using a Riemann sum) to include multiple integration routines, which
can be used to optimise the results for different geometric effects and drastically increase
the speed of the coupling calculations (see sction 4.7.9). This involves extensive testing
of the code, including internal tests of Finesse map routines against analytical methods
for calculating the effect of simple distortions (i.e. misalignment, see section 4.7.11) and
comparisons of Finesse results with other simulation tools using significantly different
simulation methods. This has been my particular job during the development of Finesse
(Charlotte Bond). As part of this on-going task we appealed to other simulators in
the gravitational wave community for simulation examples which they believed would
be a good test of Finesse. We were challenged by Hiro Yamamoto to simulate an
Advanced LIGO arm cavity with thermally distorted mirrors and determine the loss
of power during one round-trip of a light field in such a cavity. Previous attempts to
simulate this using other modal methods have failed to replicate the results achieved
using Fast-Fourier-Transform (FFT) propagation methods, such as those carried out by
Yamamoto [Yamamoto]. The application of thermal effects in models of gravitational
wave detectors will be crucial for the commissioning of advanced detectors, so it is vital
that Finesse can simulate these effects accurately.

The failure of previous modal models and the fact that the inclusion of thermal distortions
requires delicate handling makes this setup the perfect test of Finesse. This is also a
good example with which illustrate the specific steps required to optimise a Finesse
simulation with mirror maps and achieve accurate results with relatively low maxtem. In
this section we present a study of the losses incurred in the arm cavities of an Advanced
LIGO interferometer when the mirrors are thermally distorted. The distortions of the
mirrors in the Advanced LIGO arm cavities are expected to be relatively large, due to
the high circulating powers expected in the arms. This study is a good test for the use
of mirror maps in Finesse, as these are important simulations for commissioning and
require some effort to simulate the setup correctly.

177

Appendix C Realistic thermal distortions in Advanced LIGO arm cavities

C.1 Preparing mirror maps

In order to simulate the effects of thermal distortions in Finesse the expected distortion
of the mirrors are calculated and stored in the Finesse mirror map format. In this case
we consider the distortion after the mirror has achieved thermal equilibrium and calculate
the distortions using the Hello-Vinet method [Hello-Vinet]. Any absorption of the laser
beam in the mirrors results in a temperature gradient in the mirror substrate, causing
the material to expand and deform as well as causing a change in the refractive index.
This has two effects: 1) it distorts the surface of the mirror from an ideal curved surface;
2) it creates an effective lens in the substrate. In this study we consider only the effect
of the surface distortion.

The absorption can occur in either the mirror substrate or the coating. For simplicity we
here consider only the absorption in the coating and not the substrate. For this example
we investigate a realistic absorption level of 1 ppm (part-per-million) per mirror. We
consider three cases:

1. No absorption. The mirrors are represented as perfect spheres, the only realistic
geometric effect being their finite apertures.

2. Unbalanced. 1 ppm absorption in the end test mass (ETM) and no absorption in
the input test mass (ITM).

3. Balanced. 1 ppm absorption in each mirror.

For these examples we require two mirror surface maps, one for the ITM and one for
the ETM. The distortions on each mirror will be slightly different, as although they have
the same radius, thickness and material properties the beam spot sizes incident on the
mirrors will be different: 5.3 cm on the ITM and 6.2 cm on the ETM. The temperature
gradient and resulting thermal distortion depend on the size and shape of the incident
beam. Several SimTools (see section 7.2.1) functions have been developed for the purposes
of calculating the thermal distortions and lensing for just such a setup. The function
FT_mirror_map_from_thermal_distortion.m was used to produce the maps for this
investigation. This function employs the Hello-Vinet formula to calculate the resulting
distortion of a mirror with given dimensions and thermal properties illuminated by a
gaussian beam of a given spot size. In figure C.1 plots of the thermal distortion for the
end test mass are shown, both as a cross-section of the mirror surface and as a mirror
surface map. This distortion is dominated by low spatial frequencies and a substantial
part can be described as a change in curvature of the mirror.

In order to successfully calculate the effects of mirror surface distortions in Finesse the
Gaussian beam parameter used to calculate the coupling coefficients must be carefully
chosen. For the case of resonant cavities the most appropriate choice of beam parameter
is commonly that which matches the geometry of the cavity, in this case using a beam
parameter whose curvature matches the curvature of the mirrors. In order to apply this
successfully any curvature of the mirrors should be applied in Finesse using the attr

command, rather than being contained in a mirror map. The cav command can then
be used to set the Gaussian parameter to be mode-matched to the cavity. Although for

178

C.1 Preparing mirror maps

−15 −10 −5 0 5 10 15
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

r [cm]

T
he

rm
al

 d
is

to
rt

io
n

[n
m

]

Thermal distortion
Approximate paraboloid

Figure C.1: Plots showing the expected thermal distortion of the end test mass in an
Advanced LIGO arm cavity with 1 ppm coating absorption. The cross section (left)
shows the overall distortion and an approximate paraboloid fitted to the distortion.
The equivalent mirror map is shown (right).

small curvatures both methods should give equivalent results, a good choice of Gaus-
sian parameter should require fewer higher order modes and a lower maxtem. Therefore,
for this investigation the curvatures are removed from the surface maps before they are
applied to the mirrors. Again, several SimTools functions have been developed for just
such a task. Tools using Zernike polynomials have been produced for the analysis and
preparation of maps, analysing the entire surface over the defined mirror disc. However,
this particular case involves fitting a curved surface to the map and then removing it
(FT_remove_curvature_from_mirror_map.m). As the mirrors are not uniformly illumi-
nated the curvature fitting process should be most accurate where the beam is at its
most intense, i.e. the fitting process should be weighted by the appropriate gaussian
beam. This is achieved by minimising:

x =

∫ a

0

∫ 2π

0
W (r) [Smap − SC]2 r dφ dr

where Smap is the surface discribed by the map, SC is the fitted curved surface (described
by a radius of curvature, Rc) and W (r) is the weighting function. In this case W (r) is the
gaussian beam intensity function, with a given spot size. For the case of mirror thermal
distortions the weighted curvature (so-called approximate paraboloid) can be calculated
analytically [VPB] using the SimTools function
FT_approximate_paraboloid_for_thermal_distortion.m. The cross-section of the ap-
proximate paraboloid found using this function is plotted in figure C.1 for the end test
mass, a curved surface with Rc = −80 km. The curved surface is removed from the map,
the residual distortion of the ETM is shown in figure C.2. The distortion of the ITM was
similarly calculated and a weighted curvature of Rc = −60 km was removed.

In most cases this removed curvatures would then be included in the radius of curvature
defined in the Finesse script (using the attr command). However, for this investigation
we assume that the Advanced LIGO thermal compensation system is working as expected,

179

Appendix C Realistic thermal distortions in Advanced LIGO arm cavities

−15 −10 −5 0 5 10 15
−20

0

20

40

60

80

100

120

r [cm]

T
he

rm
al

 d
is

to
rt

io
n

[n
m

]

Figure C.2: Plots showing the cross section (left) and mirror map (right) of the expected
thermal distortion of the end test mass in an Advanced LIGO arm cavity, where a
Gaussian weighted curvature has been fitted and removed from the surface.

correcting for the curvature change caused by the thermal deformation. Therefore, we
assume the curvatures are corrected back to their nominal values, 2245 m (ETM) and
1934 m (ITM). Generally, when using mirror maps, we would also fit and remove any
tilt of the surface, effectively aligning the mirror in the simulation setup. However, in
this case the thermal distortions contain no tilt term, so we can omit this step in the
map preparation. We do, however, remove any offset from the maps using the SimTools
function FT_remove_offset_from_mirror_map.m. Any overall offset of the mirror should
be set in the Finesse file by tuning the mirror position, not hidden in the mirror map.

C.2 Simulation setup

The simulation setup is based on the simple Fabry-Perot cavity. The mirror parameters
and cavity length are the Advanced LIGO design parameters:

m mITM 0.985965 0.014 0 nITM2 nITM1

s sC 3994.5 nITM2 nETM1

m mETM 0.99996 5u 0 nETM1 dump

The curvature of the mirrors are defined using the attr command and the beam injected
into the cavity is mode matched to the cavity using the cav command:

attr mITM Rc 1934

attr mETM Rc 2245

cav armcav mITM nITM2 mETM nETM1

Both mirrors are seen as concave from inside the cavity. In Finesse the sign of the radius
of curvature is related to the order of the nodes in the mirrors definition. As both mirrors
are defined with the node inside the cavity first (nITM2 and nETM1) the curvatures are
given as positive. For all 3 cases the finite aperture (16.8 cm) of the mirrors must be

180

C.3 Results

specified using the attr command:

attr mITM r_ap 0.168

attr mETM r_ap 0.168

Finally the mirror maps must be applied to the ITM (case 3) and to the ETM (case 2
and 3). For example, to include the map describing the thermal distortion of the ETM,
the following commands are required:

ETM map commands

map mETM etm_thermal_res_map.txt

knm mETM etm_map_coupling

conf mETM save_knm_binary 1

conf mETM interpolation_method 2

conf mETM integration_method 3

The map command specifies the file containing the mirror map stored in the standard
Finesse format. A file, “etm map coupling” is specified in which to save the coupling
coefficients, in binary form for speed of access (save_knm_binary). We also specify the
linear interpolation of the mirror surface and the cuba parallel integration method for the
calculation of the coupling coefficients (see section 4.7.9). The ITM map is applied with
equivalent commands. However, care should be taken in the case of the ITM. In Finesse
the order of the nodes specifies which way the map is applied to the mirror. The z-axis of
the map surface will point towards the first specified node, away from the second node.
Therefore, to orientate the ITM map with the surface facing the inside of the cavity the
order of the nodes should be specified with the cavity node first.

C.3 Results

For this investigation the figure of merit we have chosen is the round-trip loss incurred
for the 3 different cases. This is a useful single number for comparison between different
simulation methods. Previous attempts with other modal based methods have failed to
agree with other methods in similar investigations of the losses in thermally distorted
cavities. This makes this investigation a good test of Finesse as a robust, accurate tool
for calculating the effects of realistic optics.

In Finesse a single round-trip of a cavity is not simply simulated. The round-trip loss is
therefore calculated using the power circulating in the cavity:

Larm = TITM

(√
PFP(0)

PFP(Larm)
− 1

)
(C.1)

where TITM is the transmission coefficient of the input mirror, PFP(0) is the circulating
power in the equivalent, lossless cavity and PFP(Larm) is the power circulating in the lossy
cavity.

181

Appendix C Realistic thermal distortions in Advanced LIGO arm cavities

In Finesse the setups for case 1, 2 and 3 were simulated for a range of maxtem, from
0 to 20. Due to the relatively large nature of the thermal distortions it is expected that
we will require a relatively high maxtem. For comparison the same simulations were also
carried out using a Fast-Fourier Transform (FFT) method, based on OSCAR [OSCAR].
The circulating power is detected when the cavity is tuned to the point where the power is
at a maximum. Locking sequences and more compex operating points are omitted in this
example as these require delicate handling in the FFT code. From the circulating power
the round-trip loss is calculated for each case. Figure C.3 shows plots of the round-trip
losses as the maxtem is increased for cases 2 and 3.

These results, for the cases where thermal distortions are applied to the mirrors, demon-
strates the importance of including the right number of higher-order modes in Finesse
simulations. A lot of coupling into higher order modes occurs at lower orders, but the
mid orders (6-10) still contribute significantly to the overall result. Choosing too small a
maxtem can lead to wildly inaccurate results. However, by including enough higher-order
modes Finesse can successfully re-create results achieved using other methods, with the
added advantage that once the coupling coefficients are calculated the effects can be
incorporated into the simulations without the need for re-calculation.

The results for specific values of maxtem for the 3 cases are summarised in table C.1. For
case 1 the round-trip loss is incurred due to the finite size of the mirrors and the power
clipped by these apertures. The aperture is large, compared to the size of the beam,
and therefore the coupling into higher order modes is small. Therefore, the round-trip
loss stabilises with low maxtem, agreeing well with the result of the FFT propagation
method. For case 2 the distortion of the end mirror causes coupling into higher order
modes, specifically modes of an even order as the distortions are symmetric, spherical
aberrations. Although the most significant coupling happens at low orders there is still

0 5 10 15 20
10

1

10
2

10
3

10
4

maxtem

ro
un

d−
tr

ip
 lo

ss

FINESSE
FFT

0 5 10 15 20
10

1

10
2

10
3

10
4

maxtem

ro
un

d−
tr

ip
 lo

ss

FINESSE
FFT

Figure C.3: Plots showing the round-trip loss for different values of maxtem in Advanced
LIGO cavities with thermal mirror distortions simulated in Finesse and using an FFT
propagation method. The effect of thermal distortions are added to the end mirror
(left) and both mirrors (right).

182

C.3 Results

a relatively large contribution from the higher orders. At a maxtem of around 8-10 the
round-trip loss reaches the right magnitude and by maxtem 15 the Finesse result agrees
very well with the FFT result. Another interesting point regarding case 2 is that the
addition of higher order modes does not just account for the power previously disregarded
in higher-order modes. For example if we were to simulate such a setup using only maxtem

6 the round-trip loss would be significantly underestimated. This is because this example
deals with a cavity, where any coupling during one mirror incidence results in modes
which can couple into higher order modes.

Finally, in case 3 the round-trip loss is actually greatly reduced from the case where we
consider just one distorted mirror. As the distortions on the two mirrors are identical,
as scaled by the incident beam size, the distortion of the wavefront by the end mirror
will match the distorted input mirror. This match of the distorted mirror and wavefront
causes much less subsequent distortion of the beam, less coupling into higher-order modes
and hence less power clipped by the finite size of the mirrors. This result is recreated in
the Finesse simulation, an effect which previous modal models were unable to achieve,
using maxtem 10-15.

Case Finesse (maxtem 10) Finesse (maxtem 15) FFT

1 0.8 0.9 0.9
2 203 228 234
3 32 26 27

Table C.1: Round-trip losses in simulated Advanced LIGO cavities for three different
cases: 1) no thermal distortions; 2) a thermally distorted end mirror; 3) thermal
distortions of the input and end mirrors. The cavities are simulated using an FFT
propagation method and Finesse.

For either case we have demonstrated that we can achieve similar results using Finesse
with a finite number of modes. In particular, maxtem 10 is used to achieve the correct order
of magnitude, which should be good enough in this case as simulation and experiment will
not match down to exact ppm losses. However, a more accurate result can be achieved
using a maxtem of around 15.

One final consideration is the accuracy we are using in the calculation of the coupling
coefficients. This is defined in the “kat.ini” file by the variable abserr, the absolute error
of the coupling coefficients. The results summarised above were achieved using an abserr

of 1 × 10−6. The default value set in the “kat.ini” file is 1 × 10−3. The results achieved
using this default value are summarised in table C.2. The do not differ by a large degree
to those using 10−6

183

Appendix C Realistic thermal distortions in Advanced LIGO arm cavities

Case Finesse (maxtem 10) Finesse (maxtem 15)

1 0.7 0.8
2 202 225
3 33 27

Table C.2: Round-trip losses in Advanced LIGO cavities for three cases: 1) no thermal
distortions; 2) a thermally distorted ETM; 3) thermal distortions of the ITM and ETM.
The cavities are simulated using Finesse and the default absolute error of 1× 10−3.

184

Appendix D

Further reading: Finesse in practice

The interested reader is directed to the following documents, which give extensive de-
tails on testing different Finesse features and specific commissioning tasks for Advanced
LIGO1.

Testing:

• [Bond13] Interferometer responses to gravitational waves are derived, from simple
spaces to Michelson and Sagnac interferometers, and compared with the responses
produced using Finesse.
• [Clarke] The improved modelling of sidebands of sidebands in Finesse is described.
• [Ballmer] Comparisons of alignment signals calculated for Fabry-Perot cavities us-

ing three methods: Finesse, an analytic calculation and the FFT propagation
simulation OSCAR [OSCAR].
• [Bond13b] Comparisons of the control signals and sideband build up in Advanced

LIGO, as modelled in Finesse and Optickle.

Commissioning:

• [Dooley] Report on various commissioning tasks and particular simulation issues,
as covered in the Advanced LIGO commissioning meeting, January 2013.
• [Bond13c] A dedicated commissioning investigation into power loss at the central

beam-splitter in Advanced LIGO using Finesse.
• [Kokeyama] Finesse simulations of the alignment control signal of the Advanced

LIGO input mode cleaner.
• [Bond14] Simulations of the effects of mode mismatches on longitudinal control

signals at the Livingston Advanced LIGO interferometer.

Finesse files:

• [L1kat] Finesse files for the Advanced LIGO interferometer at Livingston.
• [H1kat] Finesse files for the Advanced LIGO interferometer at Hanford.

1 I believe that similar documents exist also in other projects, this list is simply a collection of documents
related to our own modelling work.

185

186

Appendix E

Maps and Coupling Coefficients

The scenario often arises where we want to apply misalignments, mode mismatches, a
surface distortion and an aperture to simulate a realistic mirror. The coupling coefficient
is more commonly refered to as an inner product or projection of a beam from one ‘basis
set’ into another. The basis sets we are considering here are the orthogonal Hermite-
Gaussian (HG) functions. A beam at any point can be decomposed into a HG basis set
and is described by a vector ain,N , N ∈ {0, 1, 2, . . . , Nmax}, where Nmax is the highest
order of HG polynomial we consider. It is also assumed there exists some linear mapping
between the HG mode number in the sagittal and transverse directions nm → N and
n′m′ →M , to save writing nm and n′m′ all the time.

The outgoing beam of mode M has the beam parameter q2, the incoming mode N is q1

– these beam parameters are known values and are set by the user (and Finesse’s beam
tracing routine). However the incoming beam must first interact with the mirror’s or
beamsplitter’s known properties, i.e. its radius of curvature represented by the application
of the ABCD matrix which transforms the incoming beam as q1 → q′1. The projection
between q′1 to the basis q2 is then required. This is given by the coupling coefficient
integral (also known as an overlap integral or complex function space inner product)
between the incoming and outgoing beam basis. The coupling between mode N and M
is computed as

kNM = 〈UN , UM 〉 =

∫∫ ∞
−∞

UN (x, y, q′1)U∗N (x, y, q2)dxdy (E.1)

This so far is just computing the mode-mismatch between q′1. The values of kNM can be
arranged in the form of a matrix

K =

 〈U0, U0〉 〈U1, U0〉 〈U2, U0〉 . . . 〈UNmax , U0〉
...

...
...

. . .
...

〈U0, UNmax〉 〈U1, UNmax〉 〈U2, UNmax〉 . . . 〈UNmax , UNmax〉

 (E.2)

Which can then be applied to the mode content vector of the incoming beam to get the
outgoing beam mode content in the beam parameter q2

aout = Kain (E.3)

The coupling coeffcient equation can also tell us if we further distort the incoming beam,
for example via a mirror surface map, how this will project into the outgoing beam. Here,

187

Appendix E Maps and Coupling Coefficients

for example, A and B are two separate distortions, such as a tilt of the optic surface and
some astigmatic surface curvature. Then the overlap integral becomes

kNM =

∫∫ ∞
−∞

UN (x, y, q′1)A(x, y)B(x, y)U∗N (x, y, q2)dxdy (E.4)

This can be represented in multiple ways using the inner product notation∫∫ ∞
−∞

UN (x, y, q′1)A(x, y)B(x, y)U∗N (x, y, q2)dxdy = 〈UNAB,UM 〉 (E.5)

= 〈UNA,B∗UM 〉 (E.6)

= 〈UN , A∗B∗UM 〉 (E.7)

Assuming that the effect of B is something simple and (on its own) could be implemented
using a analytic solution and A is complicated and requires a numerical integration that
uses much computational power. This arises, for example, when we have some real
measurements of an optics surface which is represented as a surface map, and at the
same time we also may want to tilt the optic by a range of different angles to generate
alignment signa. The latter requires many recomputations of K, but we posses analytic
solutions in the form of the Bayer-Helms routines. It the current form the entire matrix
K would need to be recomputed even though the mirror surface map remains unchanged.

To circumnavigate this problem we can try to separate the effects into two sets of coupling
coefficients. Mathematically this is done by ”inserting unity” – for lack of a better term
– into the coupling coefficient equation

kNM =
∞∑
L

〈UNA,UL〉 〈UL, B∗UM 〉 . (E.8)

This can be understood better perhaps in terms of dot products of vectors, which is a
more specialised inner product. Take the vectors a and b of equal length which are then
projected onto the infinite basis vector set c

a =
∑
n

Ancn (E.9)

b =
∑
n

Bncn (E.10)

〈a, b〉 =
∑
n

an · bn (E.11)

=

∞∑
l

(a · cl)(cl · b) (E.12)

Using this trick for the HG coupling coefficients we create 2 inner products: one that can
be solved analytically and another which requires numerical integration; we essentially

188

E.1 Correct implementation

need to compute 2 separate K matrices.

KNM =
∞∑
L

〈UNA,UL〉 〈UL, B∗UM 〉 = [KAKB]NM (E.13)

=
∞∑
L

∫∫ ∞
−∞

UN (x, y, q′1)A(x, y)U∗L(x, y, qL)dxdy (E.14)

. . .

∫∫ ∞
−∞

UL(x, y, qL)B(x, y)U∗M (x, y, q2)dxdy (E.15)

Of course our choosing the beam parameter that UL represents is arbritary here. However,
the choice UL will have a strong influence on the numerical error in practise because only
a limited set of modes is used in the simulation whereas the equation E.8 is only correct if
the complete set is used. The two choices that should provide best performance in most
cases is to use either q′1 or q2. It is also worth nothing that the positioning of A and B in
the inner products is also completely arbritary, in the sense we could also compute

KNM =
∞∑
L

〈UNAB,UL〉 〈UL, UM 〉 (E.16)

however the second inner product here is just δLM (if qL = q2), which offers no computa-
tional improvement over what we had originally. If qL = q′1 values differ we are essentially
moving the mode-mismatch computation into a separate matrix and computing the dis-
tortion coupling back into the same beam basis.

Our outgoing beam is now computed as

aout = Kain = (KAKB)ain (E.17)

Commutations should not exist as long as enough modes are used in the projection to
UL as the ordering of A and B is arbitrary. An issue may arise if the solver chosen for
KA or KB is an analytic solution will be much more accurate ≈ 10−15 than a numerical
solver which are typically 10−6, thus commutation errors will arise from this due to these
errors.

E.1 Correct implementation

From the previous analysis we can now state the optimal routine for separating the true
coupling coefficient matrix K. For distortions A and Bthe coupling from mode N to
mode M whose beam parameters are respectively q′1 and q2 is

KNM = [KAKB]NM (E.18)

=

∞∑
L

〈UN (q2)A(x, y), UL(qL)〉︸ ︷︷ ︸
A Solver

〈UL(qL), B∗(x, y)UM (q2)〉︸ ︷︷ ︸
B Solver

. (E.19)

189

Appendix E Maps and Coupling Coefficients

We further defined the solver as follows: if a distortion (A or B) is a surface map, the
respective matrix is to be computed by numerical integration. In all other cases the
matrix is computed using the Bayer-Helms equations.

We provide to user command to influence the ordering and the selction of qL. The order
of the matrix calculation is defined by

conf [component] knm_order AB [A,B = 1(Map) or 2(Bayer-Helms)]

where the argument states which solver and distortion is applied to which coupling co-
efficient matrix KA and KB. The value of qL also needs to be decided, here we use the
command

conf [component] knm_change_q [1 or 2]

where if the argument is 1 then qL = q′1 else if 2 then qL = q2. The command
knm_apply_ABCD is no longer needed.

E.2 Separating more distortions

Although not necessary now, in the future the need to compute more than two distortions
efficiently might be needed. The method for adding more is simply a repetition of the
previous steps splitting the initial inner product into two. Inner product A or B must be
chosen to be split, I will choose B here arbritarily to add a distortion C

KNM = 〈UN (q2)A(x, y)B(x, y)C(x, y), UM (q2)〉 (E.20)

=
∞∑
L

〈UN (q2)A(x, y), UL(qL)〉︸ ︷︷ ︸
A Solver

〈UL(qL)B(x, y)C(x, y), UM (q2)〉︸ ︷︷ ︸
B Solver

(E.21)

=
∞∑
L

〈UN (q2)A(x, y), UL(qL)〉︸ ︷︷ ︸
A Solver

(E.22)

. . .
∞∑
J

〈UL(qL)B(x, y), UJ(qJ)〉︸ ︷︷ ︸
B Solver

〈UJ(qJ), C∗(x, y)UM (q2)〉︸ ︷︷ ︸
C Solver

(E.23)

= [KA(KBKC)]NM (E.24)

Here we now have another matrix KC which we need to compute, this requires another
projection onto the basis UJ whose beam parameter is qJ .

E.3 Coupling coefficient integration performance improvements

Calculating the coupling coefficients by numerical integration is a computationally ex-
pensive process and can last from minutes to days depending on the map and incom-
ing/outgoing beam parameters. As seen previously the coupling coefficient matrix can be

190

E.3 Coupling coefficient integration performance improvements

split up into 2 separate ones for both the numerical integration result and Bayer-Helms.
We also had to make a choice for the value of qL, if this is chosen so that the numerical
integral matrix has the same incoming and outgoing beam parameter an ≈ ×2 speedup
can be achieved. Taking the coupling coefficient integral we get

Unm = (2n+m−1n!m!π)−1/2 1

w(z)
eiψ(z)(n+m+1)...

...Hn

(√
2x

wo,x

)
Hm

(√
2y

wo,y

)
e
−i kr

2

2q(z) (E.25)

=
Anm
w(z)

eiψ(z)(n+m+1)HnHme
−i kr

2

2q(z) (E.26)

knmn′m′ =

∫
Un′m′F (x, y)U∗nmdA (E.27)

knmn′m′ =
AnmAn′m′

wout(z)win(z)
eiψout(n

′+m′+1)e−iψin(n+m+1)...

...

∫
F (x, y)HnHmHn′Hm′e

−i kr
2

2

(
1

qout(z)
− 1
q∗
in

(z)

)
dA (E.28)

The interesting case for us here is when qin = qout, if this is true then the above simplifies,

knmn′m′ =
AnmAn′m′

w2(z)
eiψ(∆n+∆m)

∫
F (x, y)HnHmHn′Hm′e

−x
2+y2

w2(z) dA, (E.29)

∆n = n′ − n, (E.30)

∆m = m′ −m. (E.31)

(E.32)

We then find that the transpose elements are nearly identical, i.e. 00→ 10 and 10→ 00,
expect for the an opposite sign in the Gouy phase

kn′m′nm =
AnmAn′m′

w2(z)
e−iψ(∆n+∆m)

∫
F (x, y)HnHmHn′Hm′e

−x
2+y2

w2(z) dA. (E.33)

Dividing one by the other leaves us with the final relationship between the elements in
the matrix

kn′m′nm = knmn′m′e
−i2ψ(∆n+∆m), (E.34)

|kn′m′nm| = |knmn′m′ |. (E.35)

So we see that the matrix is symmetric if Gouy phase is 0, as it is at the beam waist.
This is a useful relationship especially for calculating the coupling matrices as now we
need only calculate one half of the matrix. The transpose elements can easily be found
by just multiplying by the phase factor. The potential computational reduction increases
when using more modes if mode matched by a factor (N−1)/2N , where N is the number
of modes used.

This performance increase is on by default and switches off in the code if not mode-
matched. It can be manually controlled from the kat.ini file with the option

191

Appendix E Maps and Coupling Coefficients

calc_knm_transpose [0 or 1].

192

Appendix F

Some mathematics

This appendix gives some details about some of the formulae and algorithms used in
Finesse.

F.1 Hermite polynomials

The first few Hermite polynomials in their unnormalized form can be given as:

H0(x) = 1, H1(x) = 2x,
H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x.

(F.1)

Further polynomial orders can be computed recursively using the following relation:

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (F.2)

In Finesse the functions up to H10 are hard-coded and for higher orders the recursion
relation is used.

F.2 The paraxial wave equation

An electromagnetic field (at one point in time, in one polarisation, and in free space) can
in general be described by the following scalar wave equation [Siegman]:[

∇2 + k2
]
E(x, y, z) = 0. (F.3)

Two well-known exact solutions for this equation are the plane wave:

E(x, y, z) = E0 exp (−i kz), (F.4)

and the spherical wave:

E(x, y, z) = E0
exp (−i kr)

r
with r =

√
x2 + y2 + z2. (F.5)

Both solutions yield the same phase dependence along an axis (here, for example, the z-
axis) of exp(−i kz). This leads to the idea that a solution for a beam along the z-axis can

193

Appendix F Some mathematics

be found in which the phase factor is the same while the spatial distribution is described
by a function u(x, y, z) which is slowly varying with z:

E(x, y, z) = u(x, y, z) exp (−i kz). (F.6)

Substituting this into Equation F.3 yields:(
δ2
x + δ2

y + δ2
z

)
u(x, y, z)− 2i kδzu(x, y, z) = 0. (F.7)

Now we put the fact that u(x, y, z) should be slowly varying with z in mathematical
terms. The variation of u(x, y, z) with z should be small compared to its variation with
x or y. Also the second partial derivative in z should be small. This can be expressed as:

∣∣δ2
zu(x, y, z)

∣∣� |2kδzu(x, y, z)| ,
∣∣δ2
xu(x, y, z)

∣∣ , ∣∣δ2
yu(x, y, z)

∣∣ . (F.8)

With this approximation, Equation F.7 can be simplified to the paraxial wave equation:(
δ2
x + δ2

y

)
u(x, y, z)− 2i kδzu(x, y, z) = 0. (F.9)

194

Appendix G

Syntax reference

In order to use the program you have to know and understand the commands for the
input files. The following paragraphs give a full explanation of the syntax. The help
screens (use ‘kat -h’ or ‘kat -hh’) give a short syntax reference. See other our online
syntax reference at http://www.gwoptics.org/finesse/reference/.

G.1 Comments

Two different methods are available for adding comments to the Finesse input files.
First, each line can be ‘commented out’ by putting a single comment sign at the start of
the line. The comment signs are #, " and %.

Any of these signs can also be used to add a comment at the end of a line, for example:
xaxis mirror phi lin -20 20 100 # tune mirror position

The second commenting method is the use of C-style block comments with /* - - - */.
This is very useful for including several different sets of commands in one input file. In
the following example some temporarily unused photodiodes have been commented out:

/*

pd pd1 n23

pd pd2 n24

pd pd3 n25

pd pd4 n26

*/

pd1 pd1p 1M 0 n23

Please note that these comment strings must be used in empty lines, otherwise
the (very simple) parser cannot handle them correctly.

G.2 Components

Parameters in square brackets [] are optional.

195

http://www.gwoptics.org/finesse/reference/

Appendix G Syntax reference

• m : mirror
usage : m name R T phi node1 node2

R = power reflectivity (0<R<1)
T = power transmittance (0<T<1)

phi = tuning in degrees
A positive tuning moves the mirror from node2 towards node1.

• m1 : mirror
usage : m1 name T Loss phi node1 node2

T = power transmittance (0<T<1)
Loss = power loss (0<Loss<1)
phi = tuning in degrees

Note: the values are not stored as T and L but as R and T with 0<R, T<1. Thus,
only R and T can be tuned (e.g. with xaxis).

• m2 : mirror
usage : m2 name R Loss phi node1 node2

R = power reflectivity (0<R<1)
Loss = power loss (0<Loss<1)
phi = tuning in degrees

Note: the values are not stored as T and L but as R and T with 0<R, T<1. Thus,
only R and T can be tuned (e.g. with xaxis).

• s : space
usage : s name L [n] node1 node2

L = length in metres
n = index of refraction

(default is 1.0 or specified with n0 in ‘kat.ini’)

• bs : beam splitter
usage : bs name R T phi alpha node1 node2 node3 node4

R = power reflectivity (0<R<1)
T = power transmittance (0<T<1)

phi = tuning in degrees
alpha = angle of incidence in degrees

A positive tuning moves the beam splitter along from node3/node4 towards node1/node2
along a vector perpendicular to the beam splitter surface (i.e. the direction depends
upon ‘alpha’).

196

G.2 Components

• bs1 : beam splitter
usage : bs1 name T Loss phi alpha node1 node2 node3 node4

T = power transmittance (0<T<1)
Loss = power loss (0<Loss<1)
phi = tuning in degrees

alpha = angle of incidence in degrees
Note: the values are not stored as T and L but as R and T with 0<R, T<1. Thus
only R and T can be tuned (e.g. with xaxis).

• bs2 : beam splitter
usage : bs2 name R Loss phi alpha node1 node2 node3 node4

R = power reflectivity (0<R<1)
Loss = power loss (0<Loss<1)
phi = tuning in degrees

alpha = angle of incidence in degrees
Note: the values are not stored as T and L but as R and T with 0<R, T<1. Thus
only R and T can be tuned (e.g. with xaxis).

• gr : grating
usage : gr[n] name d node1 node2 [node3 [node4]]

d = grating period in [nm]
Other parameters of the grating (some must be set) can be set via the attr com-
mand; these are:

– power coupling efficiencies: eta 0, eta 1, eta 2, eta 3, rho 0
– angle of incidence: alpha
– radius of curvature: Rcx, Rcy, Rc (not yet implemented)

Grating types are defined via their number of ports:
2 1st order Littrow (eta 0, eta 1)
3 2nd order Littrow (eta 0, eta 1, eta 2, rho 0)
4 not Littrow (eta 0, eta 1, eta 2, eta 3)

• isol : isolator
usage : isol name S node1 node2 [node3]

S = power suppression in dB
The light passes the isolator unchanged from node1 to node2 but the power of the
light going from node2 to node1 will be suppressed:

aout = 10−S/20 ain,

with a as the field amplitude.
When using the optional third node all the suppressed power going from node 2 to
1 is output into node3.

197

Appendix G Syntax reference

• l : laser (input light)
usage : l name P f [phase] node

P = light power in Watts
f = frequency offset to the default frequency f0

(default frequency determined from ‘lambda’ in ‘kat.ini’)
phase = phase

Standard laser input.

• sq : squeezed vacuum input
usage : sq name f r angle node

f = frequency offset to the default frequency to squeeze f0

r = squeezing in decibels, r > 0
angle = squeezing angle in degrees

A squeezed vacuum input source that has variable squeezing in dB and squeezing
angle. A squeezing of 20 dB should reduce the noise by a factor of 10.

• pd : photodiode (plus one or more mixers)
usage : pd[n] name [f1 [phase1 [f2 [phase2 [...]]]]] node[*]

n = number of demodulation frequencies (0 ≤ n ≤ 5)
f1 = demodulation frequency of the first mixer in Hz

phase1 = demodulation phase of the first mixer in degrees
f2 = demodulation frequency of the second mixer in Hz

phase2 = demodulation phase of the second mixer in degrees
. . .

The photodetector generally computes the laser power in an interferometer output.
With the command scale ampere the value can be scaled to photocurrent.
Note: the number of frequencies (n) must be given correctly. The square brackets
may be misleading here, since the parameter is not optional but can be omitted
only if the number of frequencies is zero. Some likely examples are:
pd detector1 nout1 (or pd0 detector1 nout1) : DC detector
pd1 detector2 10M 0 nout2 : one demodulation
pd2 detector3 10M 0 100 0 nout2 : two demodulations
All frequencies are with respect to the zero frequency f0 set by ‘lambda’ in the init
file ‘kat.ini’ (see Section 2.2).
The phases are the demodulation phases and describe the phase of the local oscillator
at the mixer. If the last phase is omitted the output resembles a network analyser
instead of a mixer. This differs from a mixer because the resulting signal does
contain phase information. A mixer with a fixed demodulation phase is usually
used for calculating error signals whereas one often wants to know the phase of the
signal for frequency sweeps, i.e. for calculating transfer functions.
The keyword ‘max’ can be used in place of the fixed demodulation phase, e.g.:
pd2 detector1 10M max 200 max nout1

This does use the optimum demodulation phase for each data point indepen-

198

G.2 Components

dently. This can be useful when the ‘best’ demodulation phase is not yet known
but in some circumstances it will give ‘strange’ output graphs. Note that this
kind of calculation does not represent any meaningful way of handling
real output signals. It was merely added for convenience.
Again, the optional asterisk behind the node name changes from the default beam
to the second beam present at this node (see Section 3.2.1 for the definition of the
default beam).
The positive and negative signal frequency variables, fs and mfs, can also be used
in the command instead of specifying an exact frequency.

• pdS : shot noise limited sensitivity
Usage is the same as for pd. It calculates the shot noise in the output using the DC
photocurrent (equivalent to the shot command output) and divides it by a signal.
For example,
pdS2 name 10M 90 100 0 n2

would be :
shot noise(pd n2) / (pd2 name 10M 90 100 0 n2)
i.e. the shot noise at node n2 divided by the signal at 100 Hz (phase= 0◦) in the
photocurrent at n2 demodulated at 10 MHz (phase= 90◦).
Note: This detector relies on a simple approximation for the shotnoise and only
gives the correct result when no modulation sidebands are present, see Section 6.2.
For this sensitivity output, all demodulation phases have to be set.
If the output is a transfer function and fsig was used to add signals to mirrors or
beam splitters it can be further normalised to m/

√
Hz by scale meter (see below).

• pdN : photocurrent normalised by shot noise
Usage is the same as for pd or pdS. It calculates the inverse of pdS which gives the
signal to shot noise ratio.
Note: This detector relies on a simple approximation for the shotnoise and only
gives the correct result when no modulation sidebands are present, see Section 6.2.

• ad : amplitude detector
usage : ad name [n m] f node[*]

n, m = TEM mode numbers. n refers to the x-direction.
f = sideband frequency in Hz (as offset to the input light)

The optional asterisk behind the node name changes from the default beam to the
second beam present at this node (see Section 3.2.1 for the definition of the default
beam).
The amplitude detector calculates field amplitude and phase of all light fields at
one frequency. For correct absolute values you have to set ‘epsilon c’ correctly in
‘kat.ini’ (see section 2.2). See the command ‘yaxis’ for the various possibilities for
plotting the computed values.

199

Appendix G Syntax reference

If higher order modes are used and no indices n, m are given, the amplitude detector
tries to compute the value for the ‘phase front’ on the optical axis. See Section 4.8.1.

• qd : quantum quadrature detector
usage : qd name f phase node[*]

f = sideband frequency in Hz (as offset to the input light)
phase = quadrature realtive to the amplitude quadrature (in degrees)

The optional asterisk behind the node name changes from the default beam to the
second beam present at this node (see Section 3.2.1 for the definition of the default
beam).
This outputs the amplitude of a quantum quadrature, e.g. amplitude or phase
quadrature, for a specific carrier field. The frequency value given should be that
of a carrier field or one of its modulated sidebands realtive to the set reference
frequency of the simulation.
The phase value determines which quadrature to measure. To output the amplitude
quadrature use a phase 0, the phase quadrature is given using a phase of 90.
The units of the output are normalised in units of hf/2, where h is Planck’s con-
stant and f is the simulation reference frequency. Thus an output of 1 means the
quadrature is the same size of a pure vacuum state, less than 1 is squeezed and
more than 1 means an increase in noise.
Note that this is not finalised for use with higher-order modes yet.

• sd : squeezing detector
usage : sd name f [n m] node[*]

f = sideband frequency in Hz (as offset to the input light)
n, m = TEM mode numbers. n refers to the x-direction.

The optional asterisk behind the node name changes from the default beam to the
second beam present at this node (see Section 3.2.1 for the definition of the default
beam).
This outputs information regarding the squeezing of the quantum noise state of a
given carrier field. The frequency value given should be that of a carrier field or one
of its modulated sidebands realtive to the set reference frequency of the simulation.
You can also specify which optical mode to view too but this is not finalised for use
with higher-order modes yet.
The detector outputs a complex number whose magnitude is the squeezing level in
dB rdb. The ‘squeezing factor’ r is related to rdB by:

rdb = 20 r log10(e). (G.1)

The phase of the complex output is φ the squeezing angle in degrees (use the yaxis

command to output phase information). When φ = 0, 180 and r 6= 0 then the
carrier is purely amplitude squeezed, when φ = ±90 and r 6= 0, the carrier is purely
phase squeezed; any other angle is a mixture.

200

G.2 Components

• shot : shot noise
usage : shot name node[*]

It calculates the shot noise in the output using the DC light power P as

∆P =

√
2h c

λ0
P . (G.2)

Note: This detector relies on a simple approximation for the shotnoise and only
gives the correct result when no modulation sidebands are present, see Section 6.2.

• qnoised : photodiode quantum noise (plus one or more mixers)
usage : qnoised name n [f1 [phase1 [f2 [phase2 [...]]]]] node[*]

n = number of demodulation frequencies (0 ≤ n ≤ 5)
f1 = demodulation frequency of the first mixer in Hz

phase1 = demodulation phase of the first mixer in degrees
f2 = demodulation frequency of the second mixer in Hz

phase2 = demodulation phase of the second mixer in degrees
. . .

Will compute the photocurrent noise of a DC or demodulated photodiode output.
Demodulations are set exactly the same as the pd commands. However the max

phase keyword cannot be used and all demodulation phases must be specified.
For radiation pressure and squeezing effects to be visible you must set the final
demodulation frequency to the signal frequency, either using put commands or the
$fs or $mfs variables.
The scaling of the output is dependent on the quantum_scaling value in the
kat.ini file. By default it should output amplitude spectral density noise with
units of Watts/

√
Hz.

qnoisedS can be used to output the quantum noise-to-signal ratio. It requires
a signal injection via fsig. The output is given as: noise/signal where noise is
computed using a qnoise detector and signal with a pd[n] detector. The same
number of demodulations are applied to each detector. It is possible to use the max

option as a phase with this command, as the phase needed to maximize the noise
is compute first and applied to both noise and signal detectors.
qnoiseN provides the reciprocal signal-to-noise output.

• qshot : photodiode shot noise (plus one or more mixers)
usage : qshot name n [f1 [phase1 [f2 [phase2 [...]]]]] node[*]

n = number of demodulation frequencies (0 ≤ n ≤ 5)
f1 = demodulation frequency of the first mixer in Hz

phase1 = demodulation phase of the first mixer in degrees
f2 = demodulation frequency of the second mixer in Hz

phase2 = demodulation phase of the second mixer in degrees
. . .

This will compute the demodulated noise present in the photocurrent output of a

201

Appendix G Syntax reference

photodiode. This detector assumes only that vacuum noise is present in the optical
field. Thus it cannot see radiation pressure effects nor squeezing.
The scaling of the output is dependent on the quantum_scaling value in the
kat.ini file. By default it should output amplitude spectral density noise with
units of Watts/

√
Hz.

qshotS will output the quantum noise-to-signal ratio and qshotN the signal-to-
noise ratio, see also qnoised.

• pgaind : motion parametric gain detector
usage : pgaind name component motion

name = name of the detector
component = suspended component – mirror or beamsplitter

motion = motion degree of freedom
. . .

This detector can be used to compute the parametric gain of a particular motion
of a suspended mirror or beamsplitter due to its coupling to the optical fields that
may drive the motion. The value this detector outputs is:

Rm = Re
{

∆A

A

}
(G.3)

Where ∆A
A is the transfer function from a specified motion back into itself. Thus

if Rm > 1 the motion is unstable and will exponentially increase with time. With
0 < Rm < 1 the motion will build up but is not necessarily unstable, Rm < 0 means
the motion is being damped and will not resonate.
The component specified must be suspended (for either longtudinal or rotational
motions) or have a surface motion set. The possible motion values are then: z for
longutindinal motion, rx or yaw for yaw motions, ry or pitch for pitch motions,
and sN for surface motions, where N is the (N−1)th surface motion that is set using
the smotion command.

• mod : modulator
usage : mod name f midx order am/pm [phase] node1 node2

f = modulation frequency in Hz
midx = modulation index
order = number of sidebands (or ‘s’ for single sideband)

am/pm = amplitude or phase modulation
phase = phase of modulation

Phase modulation :
‘order’ sets the order up to which sidebands are produced by the modulator. For
example, given an input light with ‘f’ equal to zero
mod mo1 10k 0.3 2 pm n1 n2

produces sidebands at -20kHz, -10kHz, 10kHz and 20kHz. The maximum possible
order is 6. If order is set to ‘s’ then the modulator produces a single sideband.

202

G.2 Components

Amplitude modulation:
‘order’ is always set to 1, and midx must be between 0 and 1.

• fsig : signal frequency
usage : fsig name component [type] f phase [amp]

or
usage : fsig name f

or
usage : fsig name component [type] f tf_name

component = one of the previously defined component names
type = type of modulation

f = signal frequency
phase = signal phase
amp = signal amplitude

tf_name = transfer function name
Used as the input signal for calculating transfer functions, see also Section 3.1.2.
For example
fsig sig1 m1 10k 0

shakes the previously defined component (e.g. a mirror) ‘m1’ at 10 kHz. Only
one signal frequency can be used in one calculation but that can be fed to several
components, e.g.
fsig sig1 m1 10k 0

fsig sig2 m2 10k 0

inserts the signal at two mirrors (in phase).
For the moment the following types of signal modulation are implemented (default
type marked by *):

– mirror: phase*, amplitude, xbeta, ybeta
– beam splitter: phase*, amplitude, xbeta, ybeta
– space: amplitude, phase*
– input: amplitude, phase, frequency*
– modulator: amplitude, phase*

To tune only the signal frequencies one has to be explicitly tuned with xaxis or put,
because only one signal frequency is allowed. E.g. in the example above, tuning
sig1 will also tune sig2.
Alternatively fsig can be used to only specific a ’signal’ or ‘noise’ frequency without
injecting a signal. The syntax is:
fsig name f

This version is typically used when looking purely at quantum noise computations
where no signals are required.
Another alternative syntax for fsig is given as:
fsig name component [type] f tf_name

This is an idential command to the normal fsig input except that the phase and
amplitude values are computed from a provided transfer function instead. See tf

203

Appendix G Syntax reference

and tf2 commands for defining transfer functions.

• vacuum : Set which quantum noise inputs to use
usage : vacuum component1 component2 ...

component = name of component to include quantum noise input at
This command is used to specify which components should be sources of quantum
noise. By default Finesse will find any open port, lossy optic, squeezer or laser input
and set it on to include all possible noise sources. If you instead wish to select only
specific noise sources you can just specify a list of component names.
Use the printnoises commmand to list all the noise sources Finesse will use in
the simulation.

G.3 Hermite-Gauss extension

This section gives the syntax of components and commands which are part of the Hermite-
Gauss extension of Finesse as described in Chapter 4. The command maxtem is used to
switch between plane-waves and Hermite-Gauss beams, see below.

• tem : distribute input power to various TEM modes
usage : tem input n m factor phase

alternative : tem* input p l factor phase

input = name of an input component
n, m = Hermite−GaussianTEMnm mode numbers
n, m = Laguerre−GaussianTEMpl mode numbers
factor = relative power factor
phase = relative phase in degrees

When an input (component ‘l’) is specified, the given laser power is assumed to be
in the TEM00 mode. The command tem can change that. Each tem command can
set a relative factor and phase for a given TEM mode at a specified input. Several
commands for one input are allowed.
Please note that the tem command is intended to add higher order modes, i.e.:
tem input1 0 1 1.0 0.0

adds a TEM01 mode to the TEM00 mode. Both fields have the same amplitude.
In order to create a pure higher order mode the TEM00 amplitude has to be explic-
itly set to zero. For example:
tem input1 0 0 0.0 0.0

tem input1 0 1 1.0 0.0

would put all power into the TEM01 mode.
Another example:
tem input1 0 0 1.0 0.0

tem input2 2 1 1.0 90.0

204

G.3 Hermite-Gauss extension

specifies that exactly the same amount of power as in the TEM00 mode should be
in TEM21, but with a phase offset of 90 degrees.
You can also specify an input Laguerre-Gaussian beam using tem*. For this version
of the command p > 0 but l can be a positive or negative integer.
Note: ‘tem’ does not change the total power of the laser beam.

• lens : thin lens
usage : lens name f node1 node2

f = focal length in metres
A lens does not change the amplitude or phase of a passing beam. When Hermite-
Gauss modes are used, the beam parameter q is changed with respect to f.

• bp : beam parameter detector
usage : bp name x/y parameter node

x/y = direction for which the parameter should be taken
parameter = a parameter derived from the Gaussian beam parameter, see below.

This detector can plot a variety of parameters able to be derived from the Gaussian
beam parameter which is set to the respective node:
w : beam radius in metres
w0 : waist radius in metres
z : distance to waist in metres
zr : Rayleigh range in metres
g : Gouy phase in radians
r : Radius of curvature (of phase front) in meters
q : Gaussian beam parameter

Please note that the Gouy phase as given by bp is not the accumulated Gouy phase
up to that node but just the Gouy phase derived from the beam parameter is:

Ψ(z) = arctan

(
Re {q}
Im {q}

)
.

The accumulated Gouy phase can be plotted with the detector gouy, see below.

• cp : cavity parameter detector
usage : cp cavity-name x/y parameter

cavity–name = name of cavity of which the parameter should be taken
x/y = direction for which the parameter should be taken

parameter = a parameter derived by the cavity trace algorithm, see below.
Please note that this detector type has not a unique name. Instead the name of the
respective cavity must be given.
This detector can plot a variety of parameters that are derived by a cavity trace.
The cavity must have been specified by the ‘cav’ command. Please note that these
parameters are only filled with meaningful numbers when a cavity trace is exe-
cuted. You can use the command ‘retrace’ to force a trace for each data point. The

205

Appendix G Syntax reference

available parameters are the same that can be printed to the terminal using ‘trace 2’:
w : beam radius at the first cavity node in metres
w0 : waist radius at the first cavity node in metres
z : distance to waist at the first cavity node in metres
r : radius of curvature of beam phase front at the first cavity node in meters
q : Gaussian beam parameter at the first cavity node
finesse : cavity finesse
loss : round trip loss (0<=loss<=1)
length : optical path length of the cavity in meters (counting a full round-trip)
FSR : free spectral range in Hz
FWHM : cavity linewidth as Full Width at Half Maximum in Hz
pole : cavity pole frequency in Hz (=0.5*FWHM)
g : cavity stability parameter

The cavity stability ranges from -1 to 1 for stable cases. Please also note that the
direction parameter (x/y) only applies to the parameters related to beam size and
stability but must always be given so that the parsing of the ‘cp’ command will
function.

• gouy : gouy phase detector
usage : gouy name x/y space-list

x/y = direction for which the phase should be taken
space-list = a list of names of ‘space’ components

This detector can plot the Gouy phase accumulated by a propagating beam. For
example:
gouy g1 x s1 s2 s3 s4 sout

plots the Gouy phase that a beam accumulates on propagating through the com-
ponents s1, s2, s3, s4 and sout.

• pdtype : defines the type of a photodetector
usage : pdtype detector-name type-name

This command defines the type of a photodetector with respect to the detection
of transverse modes. The standard detector is a simple photodiode with a surface
larger than the beam width. With ‘pdtype’ more complex detectors can be used,
like for example, split photodetectors.
In the file ‘kat.ini’ a number of different types can be defined by giving scaling
factors for the various beat signals between the different Hermite-Gauss modes.
For example, if a photodetector will see the beat between the TEM00 and TEM01,
then the line ‘0 0 0 1 1.0’ (mode factor) should be present in the description. The
definitions in the ‘kat.ini’ file are given a name. This name can be used with the
command ‘pdtype’ in the input files. Many different types of real detectors (like
split detectors) or (spatially) imperfect detection can be simulated using this feature.
The syntax for the type definitions:
PDTYPE name

206

G.3 Hermite-Gauss extension

...

END

Between PDTYPE and END several lines of the following format can be given:
1. ‘0 1 0 2 1.0’, beat between TEM01 and TEM02 is scaled with factor 1.0
2. ‘0 0 * 0 1.0’, ’*’ means ‘any’: the beats of TEM00 with TEM00, TEM10,

TEM20, TEM30,... are scaled with 1.0
3. ‘x y x y 1.0’, ‘x’ or ‘y’ also mean ‘any’ but here all instances of ‘x’ are always

the same number (same for ‘y’). So in this example all beats of a mode with
itself are scaled by 1.0

Please note that all beat signals which are not explicitly given are scaled
with 0.0. (‘debug 2’ somewhere in the input file will cause Finesse to print all
non-zero beat signal factors for all defined types.) Please take care when entering
a definition, because the parser is very simple and cannot handle extra or missing
spaces or extra characters.
The file ‘kat.ini’ in the Finesse package includes the definitions for split photode-
tectors, see Section 4.8.3.

• beam : beam shape detector
usage : beam name [f] node[*]

f = frequency of the field component in Hz
The optional asterisk behind the node name changes from the default beam to the
second beam present at this node (see Section 3.2.1 for the definition of the default
beam).
With the beam analyser one can plot the cross-section of a beam, see Section 4.8.4.
If no frequency is given the beam detector acts much like a CCD camera, it computes
the light intensity per unit area as a function of x and y. The x-axis has to be set to
either ‘x’ or ‘y’. For example xaxis beam1 x lin -10 10 100 sets the x-axis to tune
the position in the x-direction from −10w0 to 10w0 in 100 steps (for beam analyser
‘beam1’). A second x-axis can be set to the perpendicular direction in order to plot
the two dimensional cross-section of the beam. Thus the axes of the plot are scaled
automatically by w0, the waist size computed from the Gaussian beam parameter
at the beam detector. The values for the waist size are printed to the terminal and
given in the plot labels.
If a frequency is given the beam detector outputs the amplitude and phase of the
light field at the given frequency (you can use the yaxis command to define whether
the amplitude, phase or both should be plotted).

• mask : mask out certain TEM modes in front of a photodetector or a beam analyser
usage : mask detector n m factor

detector = name of a photodetector or beam analyser
n, m = TEMnm mode numbers
factor = power factor [0,1]

Several mask commands can be used per detetector.

207

Appendix G Syntax reference

Without this command all photodetectors (for which ‘pdtype’ is not used) detect
the power of all TEM modes, for example :

S(f1, f2) =
∑
nm

2 Re (anm(f1)anm(f2)) =
∑
nm

Snm, (G.4)

where anm(f) is the amplitude of the TEMnm mode at frequency f . Note that other
detectors, like split detectors, quadrant cameras or bulls-eye detectors use a special
geometry to detect certain cross-terms. Setting a mask for a TEMnm will scale the
detected power by the given factor:

Snm(f1, f2) = factor 2 Re (anm(f1)anm(f2)) . (G.5)

• attr : additional (optional) attributes for mirrors, beam splitters and spaces
usage : attr component M value Rc[x/y] value x/ybeta value gx/y value

component = the component for the attributes to be set to
M = mass in grammes
Rc = radius of curvature, in metres (zero is used for plane surface)
Rcx = radius of curvature in interferometer plane
Rcy = radius of curvature in plane perpendicular to interferometer
Rap = Radius of aperture (size of optic) [m] (Only for mirrors)

xbeta = angle of mis-alignment in the interferometer plane in radian
ybeta = angle of mis-alignment perpendicular to the interferometer

plane in radian
g = Gouy phase of a space component in degrees (see Sec-

tion 4.3.3)
gx = Gouy phase of a space component (horizontal component)
gy = Gouy phase of a space component (vertical component)

value = numerical value for the specified attribute
Note, in contrast to phases the alignment angles xbeta and ybeta are given in
radians.
The various attributes are optional. For example one can simply set the radius of
curvature of a mirror ‘m1’ to 10 metres with the command:
attr m1 Rc 10

The sign for the radius of curvature is defined as follows: if the surface seen from the
first specified node (specified at the respective mirror or beam splitter) is concave,
then the number for the radius of curvature is positive (see Section 4.3.4).
Please note that when the attributes ‘Rc’ or ‘g’ are used you cannot tune the
parameter itself. Instead, the separate directions i.e. ‘Rcx’ and/or ‘Rcy’ and ‘gx’
and/or ‘gy’ must be used for further tuning, e.g. with the xaxis command.

• map : loads and applies a surface map to a mirror or beamsplitter component
usage : map component filename

208

G.3 Hermite-Gauss extension

component = mirror or beamsplitter to which the map should be applied
filename = name of the file containing the map data

This command reads a file given by filename and searches for a surface map given
by a grid or by coupling coefficients (previously computed by Finesse). The data
must be provided in a special structure, see 4.7. You can apply multiple maps to a
mirror surface by repeating the command with the same component.

• smotion : loads and applies a surface motion map to a mirror component
usage : smotion component map_file transfer_function

component = mirror to which the map should be applied
map file = name of the file containing the map data

transfer function = name of transfer function
This command reads a file given by map file and searches for a surface motion map.
This file describes the normalised motion of a surface for use in radiation pressure
computations.
The data must be provided in a special structure, see 4.7. You can apply multiple
surface motions to a mirror by repeating the command with the same component.
The transfer function should describe how the optical force is converted into motion
of this particular shape. Finesse will internally handle the computation of the
overlap between each optical mode and the surface motion shape.

• gauss : setting the q parameter for a Gaussian beam
usage : gauss name component node w0 z [wy0 zy]

(alternative: gauss* name component node q [qy])
(alternative: gauss** name component node w(z) Rc [wy(z) Rcy])

w0 = beam waist size in metres
z = distance to waist in metres

Rc = Radius of curvature
w(z) = beam spot size at node

q = complex beam parameter (given as ‘z + izR’, i.e. ‘distance-
to-waist Rayleigh-range’)

A Gaussian beam at a certain point z′ on the optical axis can be characterised by
two parameters. The first common method is to specify the waist size w0 and the
distance to the waist z. In Finesse the complex parameter for Gaussian beams is
used:

q = z + i zR,

with zR the Rayleigh range and z the distance to the beam waist.
The distance to the waist can be positive or negative. A positive value means the
beam has passed the waist, a negative number specifies a beam moving
towards the waist. It is clear that the q parameter has to be set for a certain
direction of propagation (the other direction then has the parameter q′ = −q∗).
The direction of propagation is set with ‘component’. The node at which the Gauss
parameter is to be set has to be connected to the specified component. The direction

209

Appendix G Syntax reference

of propagation is defined as: from the component towards the node.
In general a Gaussian beam may have two different beam parameters for the x-
and the y-direction. When two parameter sets are given with gauss the first set is
assumed to be valid for the x-direction and the second for the y-direction. If only
one set is given then it is used for both directions.

• cav : tracing a beam through a cavity and compute the q-eigenvalues
usage : cav name component1 node1 component2 node2

The components and nodes specify the start and end point of a beam path through a
possible cavity. ‘node1’ has to be connected to ‘component1’ and ‘node2’ to ‘component2’.
There are only two possibilities for specifying a cavity in Finesse:

– a linear cavity: the start component and end component are two different
mirrors.

– a ring cavity: the start component and end component are the same beam
splitter and the nodes are either 1 and 2 or 3 and 4, so that the beams are
connected to each other via a reflection.

When the cavity is stable (not critical or unstable) the eigenmatrix is computed.
The resulting eigenvalues for the Gaussian beam (q parameters) are then set for all
cavity nodes.
Use ‘trace’ in the input file to see what cavity nodes are found and which q-values
are set, see below.

• trace : set verbosity for beam tracing
usage : trace n

n = an integer which sets the verbosity level.
When the trace is set, Finesse will print some information while tracing a beam
through the interferometer, through a cavity, or during other computation tasks
that are connected to the Hermite-Gauss extension. The integer ‘n’ is bit coded,
i.e. n=2 gives different information to n=4, while n=6 will give both.

n output

1 list of TEM modes used
2 cavity eigenvalues and cavity parameters like free spectral range, optical

length and finesse
4 mode mismatch parameters for the initial setup (mismatch parameter

as in [Bayer-Helms])
8 beam parameters for every node, nodes are listed in the order found by

the tracing algorithm
16 Gouy phases for all spaces
32 coupling coefficients for all components
64 mode matching parameters during calculation, if they change due to a

parameter change, for example by changing a radius of curvature
128 nodes found during the cavity tracing

210

G.3 Hermite-Gauss extension

• retrace [off|force] : recomputes the Gaussian parameters at each node for every
data point
usage : retrace

Finesse needs to trace the beam through the interferometer in order to set the
Gaussian beam parameters (see Section 4.4 for a detailed description). This is
always done once at the start of a simulation if higher-order modes are used. If
xaxis or put are used to tune a parameter like a length of a space or the focal
length of a lens or the radius of curvature of a mirror the beam parameters are
locally changed and the beam tracing should be repeated. Without re-computing a
proper base of Gaussian beam parameters such a tuning introduces a virtual mode
mismatch which can lead to wrong results.
Finesse automatically detects whether a re-tracing is required and if so computes a
new set of base parameters for each data point. The retrace command can be used
to over-ride the automatic behaviour: retrace will force a retracing and retrace

off will prevent it, regardless of the xaxis settings.
Please note that the re-tracing cannot avoiding all unwanted mode-mismatches.
Using ’retrace force’ will force the tracing alogorithm to continue tracing even if it
comes across an unstable cavity.

• startnode : recomputes the Gaussian parameters at each node for every data point
usage : startnode node

This command allows one to explicitly set the node at which the automatic beam
trace algorithm starts. The node must have a beam parameter associated with it.
This means the node must be inside a cavity that has been traced with the cav

command or the parameter must be explicitly set via the gauss command.

• maxtem : set the maximum order for Hermite-Gauss modes
usage : maxtem order

order = maximum order, i.e. n+m for TEMnm modes.
maximum number : 1

This defines the maximum order for TEMnm and thus the number of light fields
used in the calculation. The default ‘order’ is 0, the maximum value is 100. For
large values the interferometer matrix becomes very large and thus the simulation
extremely slow. Please note that the Hermite-Gauss mode is automatically switched
on if at least one attribute or command referring to transverse modes is entered.
You can explicitly switch off the Hermite-Gauss mode by using ‘maxtem off’.

• phase : switches between different modes for computing the light phase
usage : phase number

211

Appendix G Syntax reference

Four different modes are available:
0 = no change
1 = the phase for coupling coefficients of TEM00 is scaled to 0
2 = the Gouy phase for TEM00 is scaled to 0
3 = combines modes 1 and 2 (default)

The command ‘phase’ can be used to change the computation of light field phases
in the Hermite-Gauss mode. In general, with higher order modes the spaces are
not resonant any more for the TEM00 mode because of the Gouy phase. Further-
more, the coupling coefficients knmnm contribute to the phase when there is a mode
mismatch. For correct analysis these effects have to be taken into account. On
the other hand, these extra phase offsets make it very difficult to set a resonance
condition or operating point intuitively. In most cases another phase offset would
be added to all modes so that the phase of the TEM00 becomes zero. With the com-
mand ‘phase’ these phase offsets can be set for the propagation through free space,
for the coupling coefficients or both: ‘phase 1’ ensures that phases for the coupling
coefficients k0000 (TEM00 to TEM00) are 0, ‘phase 2’ ensures that all Gouy phases
for TEM00 are 0 and ‘phase 3’ combines both effects. The phases for all higher
modes are changed accordingly, so that the relative phases remain correct. Please
note that only phase 0 and phase 2 guarantee always correct results, see
Section 4.10.2 for more details.

• knm : specifies a file which the coupling coefficients for a given component generate
and saves/loads them from the file
usage : knm component_name filename_prefix

A different command of the same name existed in previous versions.
Usage has changed from version 0.99.8. The old functionality has been
moved into the conf knm_flags command.
With ‘knm’ the user can specify a file which the coupling coefficents for a component
with a map applied can save and load the coefficients from. This is primarily used to
save computational time as map coefficients can be expensive to compute. The only
components this can be applied to at the moment are mirrors. filename_prefix

states the filename prefix.
The numeric integration uses a fast self-adapting routine [DCUHRE] and Cuba
routines but nevertheless will be very slow in comparison to the simple formula
calculation. The numeric integration algorithm can be customised with the following
parameters in the kat.ini file:

212

G.4 Commands

maxintop : maximum function calls of the numeric integration
algorithm (default 400000)

abserr : absolute error requested by integration routine
(default 1e-6)

relerr : relative error requested by integration routine
(default 1e-6)

maxintcuba : Maximum integrand calculations for Cuba routines
(default 1e6)

G.4 Commands

• xaxis : x-axis definition, i.e. parameter to tune
usage : xaxis component parameter lin / log min max steps

(alternative: xaxis* component parameter lin / log min max steps)
component = one of the previously defined component names
parameter = a parameter of the component e.g. ‘L’ for a space

lin/log = defines a linear or logarithmic x-axis
min = start value
max = stop value
steps = number of steps from min to max

maximum number : 1

The previous definition of the interferometer yields exactly one output value for
every detector. To create a plot we have to define a parameter that is changed
(tuned/swept) along the x-axis of the plot. Exactly one xaxis must be defined. For
example,
xaxis s1 L lin 1 10 100

changes the length of space s1 from 1 metre to 10 metres in 100 steps.
Another useful example is to sweep the laser frequency using:
xaxis i1 f lin 0 10k 500

When the optional asterisk is used then the previously defined value for the param-
eter to tune is used as an offset. For example:
s s1 L 5

xaxis* s1 L lin 1 10 100

tunes the length of space s1 from 6 to 15 metres.
When the axis is logarithmic the min/max values are multiplied to the previously
defined value, e.g.
s s1 L 5

xaxis* s1 L log .1 10 100

tunes the length of space s1 from 0.5 to 50 metres. Note that the parameters used as
x-axis in the output plot are those given in the xaxis* statement, not the computed
values which are really used in the calculation. This feature allows one to specify

213

Appendix G Syntax reference

the tunings of the operating point in the interferometer description and then always
tune around that operating point by min = −max.

• x2axis : second x-axis definition, creates 3D plot
usage as for xaxis

This command defines a second x-axis. A 3D plot is created.

• yaxis : y-axis definition (optional)
usage : yaxis [lin / log] abs:deg / db:deg / re:im / abs / db / de

abs:deg = amplitude and phase
db:deg = amplitude in dB and phase
re:im = real and imaginary part

re = real part
im = imaginary part
abs = amplitude
db = amplitude in dB
deg = phase

maximum number : 1

This defines the (first plus an optional second) y-axis.

• scale : rescaling of output amplitudes (optional)
usage : scale factor [detector]

factor = scale factor
detector = output name

All or a specified output signal is scaled by factor. (The scaling is done after
demodulations.)
If the keyword meter is used instead of a number for factor the output is scaled
by 2π/λ0 (or λ0/2π for pdS). In case the output is a transfer function and the
signals have been added to mirrors or beam splitters the transfer functions are thus
normalised to W/m/

√
Hz (m/

√
Hz for pdS).

If the keyword ampere is used instead of a number for factor the output is scaled
by e qeff λ0/(hc). This converts light power (Watt) to photocurrent (Ampere).
If the keyword deg is used the output will be scaled by 180/π.

• diff : differentiation
usage : diff component parameter

component = one of the previously defined component names
parameter = a parameter of the component e.g. ‘L’ for a space

maximum number : 3

214

G.4 Commands

Instead of the standard result of the calculation, partial differentiation with respect
to the specified parameter will be plotted. For a higher order differentiation you
can specify the command again with the same parameter. The differentiation is
calculated as:
diff = (f(x+h/2) - f(x-h/2))/h

The step size h can be specified via the constant deriv_h in ‘kat.ini’, the default
is 1e-3. You can also overwrite the value from the ‘kat.ini’ file with the command
deriv_h in an input file. This is useful when several files which require a different
step size are located in the same directory.
Please note that if put is used, the parameter specified in put is linked to the param-
eter from the xaxis command, so a differentiation with respect to the parameter
specified in put is not possible and a differentiation with respect to the parame-
ter stated in xaxis will automatically perform a differentiation with respect to the
connection of parameters (which was introduced by put).

• const : constant definition
usage : const name value

name = user-defined name, less than 15 characters long
value = numerical or string value

The constants are used during pre-processing of the input file. If anywhere in the
file the command ‘const name value’ is defined, every instance of ‘$name’ in the
input file is replaced by ‘value’.

• variable : definition of a dummy variable
usage : variable name value

name = user-defined name, less than 15 characters long
value = numerical or string value

The sole purpose of this command is to provide a dummy variable that can then
be tuned by the xaxis command and connected to the interferometer with put

commands. A typical application would be the tuning of a differential arm length
as follows:
variable deltax 1

xaxis deltax abs lin -1 1 100

put* ETMX phi $x1

put* ITMX phi $mx1

• set : variable definition
usage : set name component parameter

name = user defined name, less than 15 characters long
component = one of the previously defined component names
parameter = a parameter of the component e.g. ‘L’ for a space

The variables are used for creating input variables that can be used with functions,
see below.

215

Appendix G Syntax reference

With ‘set’, all tunable parameters in the input file can be accessed with the usual
syntax ‘component parameter’. The set command will link the variable ‘$name’ to the
parameter value of the named component. In addition, the output of any detector
can be stored in a variable. The syntax is:
set name detector-name re/im/abs/deg

where re/im/abs/deg indicate which real number to use if the detector output is a
complex number. (NOTE: for detectors with a real output, use ‘re’ and NOT ‘abs’
since ‘abs’ will remove the sign!)
The set commands are executed for each data point, i.e. if the component parameter
is changed e.g. with the xaxis command the variable $name will change accordingly.
In addition to user defined variables, several internal variables have been defined:
‘$x1’, ‘$x2’ and ‘$x3’ have been pre-defined and point to the current value of the
xaxis (or x2axis, x3axis respectively). in addition, ‘$mx1’, ‘$mx2’ and ‘$mx3’ are
defined as minus the corresponding ‘$x’ variable. These predefined names must not
be used with ‘set’.

• func : function definition
usage : func name = function-string

name = user-defined name, less than 15 characters long
function-string = a mathematical expression

For example, func y = $Lp+2 defines the new variable ‘y = Lp+2’, with ‘Lp’ being
a previously defined variable. Such previously defined variables are entered with a
‘$’ sign. The new variable (i.e. the function result) will be plotted as a new output,
like a detector output. Any previously defined variable via set, func or lock (see
below) can be used like the function string. The functions are exectuted for each
data point. (Please note that if you use two similar function names like ‘function’
and ‘function1’ the parser might have problems to distinguish between the two.)
Note also that each function will be called initially when other variables and func-
tions are probably not yet initialised. This can lead to a division-by-zero error. For
example, the following line will often fail:

func myfunc = $var1 / $func2

To mitigate this you can use the following trick:
func myfunc = $var1 / ($func2 + 1E-21)

This feature uses the mathematical expression parser Formulc 2.22 by Harald Helf-
gott. The following functions are available in the function string: exp(), ln(), sin(),
cos(), tan(), asin(), acos(), atan(), atan2(), abs(), sqrt(), pi() (with no parameters
inside the parentheses) and rnd() (a random number between 0 and 1).
Numbers have to be given numerically, e.g. ‘3.0E-9’ instead of ‘3n’. Please note that
‘3.0e-9’ does not work. Multiplication with negative numbers requires parentheses,
e.g.:
y = (-1)*$x1

216

G.4 Commands

For a detailed description of the parser syntax, please see the documentation of
Formulc 2.22.

• put[*] : write variable into interferometer parameter
usage : put component parameter $variable

component = one of the previously defined component names
parameter = a parameter of the component e.g. ‘L’ for a space
variable = previously declared variable

For example, put space2 L $y writes the content of variable y into the length of
‘space2’. (put* always adds to the initially set lengths of ‘space2’)
All put commands are executed once before first data point is computed. If pho-
todetector outputs are used in put or func they are set to 0.0 for the first data point
calculation.

• tf : pole-zero transfer function
usage : tf name factor phase [p or z f1 Q1 [p or z f2 Q2 ...]]

name = user-defined name, less than 15 characters long
factor = overall scaling factor
phase = overall phase factor
p or z = add a pole or zero

f1,f2,f3,... = frequency of pole or zero in Hz
Q1,Q2,Q3,... = quality factor of pole or zero, Q > 0

This command defines a generic transfer function with respect to frequency. Mul-
tiple poles and zeros can be defined at user-defined frequencies and quality factors
for the resonances. For example:

tf sus 1 0 p 1 100000 z 10 130 p 20 10M

• tf2 : pole-zero transfer function
usage : tf2 name factor phase [p1,p2,...] [z1,z2,...]

name = user-defined name, less than 15 characters long
factor = overall scaling factor
phase = overall phase factor

p1,p2,p3,... = complex pole
z1,z2,z3,... = complex zero

This command defines a generic transfer function. Rather than defining the transfer
function with set frequencies and quality factors this accepts raw complex values.
Each complex value should have a corresponding conjugate value defined. For
example:

tf2 pendulum 1 0 {1+100i,1-100i} {-3+10i,-3-10i}

• lock : control loop definition
usage : lock name $variable gain accuracy

217

Appendix G Syntax reference

name = user defined name, less than 15 characters long
variable = previously defined variable (usually a photodetector output)

gain = loop gain
accuracy = threshold to decide whether the loop is locked

The command will read the variable given by ‘$variable’ and write it into the new
variable ‘name’. This variable will be also plotted as a new output, like a detector
output. lock* stops after the first point so that only the initial lock is found and the
rest is computed without locking. (Please note that if you chose two similar lock
names like ‘mylock’ and ‘mylock1’ the parser might have problems to distinguish
between the two.)
Finesse will perform an iterative computation for each data point on the x-axis.
In fact, it will compute the interferometer iteratively until the condition

|($variable)| < accuracy

is fulfilled.
In order to achieve this goal the command tries to mimic a control loop with a
simple integrator. The input ‘$variable’ serves as the error signal and the output
stored in ‘$name’ holds the feedback signal (which has to be connected to the inter-
ferometer by the user with a put command). In each iterative step it perfroms the
operation:

name = $name + gain * $variable (or name += gain * $variable)

Several lock commands can be active simultaneously and the lock output variables
can be used in func commands located below the lock in the input file. Please
note: The order of the commands ‘func’ and ’lock’ in the input file de-
termines the order of their computation!
Of course the lock fails miserably if:

– the loop is not closed,
– the error signal is not good,
– the computation is not started at or close to a good operating point,
– the gain is wrong (sign, amplitude) or,
– the steps as given by the xaxis command are too large (i.e. move the interfer-

ometer out of the linear range of the error signal).
A fine tuning of the gain is useful to minimise the computation time.
An example:

to lock a cavity to a laser beam we can write:

laser and EOM

l i1 1 0 n0

mod eo1 40k 0.3 3 pm n0 n1

cavity:

m m1 0.9 0.1 0 n1 n2

s s1 1200 n2 n3

m m2 .9 0.01 0 n3 n4

Pound-Drever-Hall signal

pd1 pdh 40k 0 n1

218

G.4 Commands

tune

xaxis m2 phi lin 0 100 400

set the error signal to be photodiode output (‘re’ stands

for the real part of the diode output. ‘re’ has to be used

with diodes that provide a real output.

set err pdh re

Perform the lock! Gain is -10 and the accuracy 10n (= 1e-8)

lock z $err -10 10n

... and connect the feedback to the interferometer

put* m1 phi $z

The behaviour of the locking routine can be adjusted by setting some paramaters
in ‘kat.ini’. For example, the lock iteration can automatically adjust the loop gains.
The following parameters in the ‘kat.ini’ file can be used:

– locksteps (integer, >0, default 10000): maximum number of steps in which
the iteration tries to achieve the lock.

– autogain (integer, 0,1,2 default 2): switch for the automatic gain control: 0 =
Off, 1 = On, 2 = On with verbose output.

– autostop (integer, 0,1 default 1): if autostop is swiched ON the locking algo-
rithm will stop after it fails to reach the desired accuracy once.

– sequential (integer, 0,1,5, default 5): this keyword determines if the feedback
signals are computed sequentially or in parallel. The sequential mode is slower
but performs much better far away from the operating point or when ‘autogain’
is needed. The default 5 uses the sequential mode for the first two data points
and then switches to the faster parallel locking.

– lockthresholdhigh (double, >0, default=1.5): whether or not a loop is prob-
ably oscillating with a too high gain is determined using ‘lockthresholdhigh’.
The criterion used is as follows (with y1,y2,... as successive error signal val-
ues): the oscillation condition is defined as:
if abs((y1+y3-2*y2)/accuracy/y3) > lockthresholdhigh, true=loop oscillates.

– lockthresholdlow (double, >0, default=0.01): whether or not a loop gain is
too low is determined using ‘lockthresholdlow’. The low-gain condition is de-
fined as:
if abs((y1+y3-2*y2)/accuracy/y3) < lockthresholdlow, true=loop gain too
low.

– locktest1 (integer, >0, default 5) and locktest2 (integer, >0, default 40):
‘locktest1’ and ‘locktest2’ determine the number of steps that an iteration is
allowed to remain in an ‘oscillation’ (or ‘low gain’). After ‘locktest1’ number
of steps the loop state is checked. If for ‘locktest2’ number of checks the same
error condition persists the loop gain will be reduced or increased by the factor
‘gainfactor’.

– gainfactor (double, >0, default 3).
You can find two more examples in Section 3.5 and a more detailed tutorial in
Appendix A.

219

Appendix G Syntax reference

• showiterate : define verbosity of the lock commands
usage : showiterate steps

steps = number of iterations
If ‘steps’ is >0 the current state of the lock iteration is printed every ‘steps’ iter-
ations. If ‘steps’= −1 the result is printed only after the first succesful iteration
(useful for knowing the values of the initial operating point).

• printfrequency : print all frequencies use
usage : printfrequency

This will print a table listing all the frequencies used in the simulation: carriers,
modulation sidebands and signal/quantum sidebands.

• printnoises : print all quantum noises used
usage : printnoises

This will print a list of all the quantum noise sources being considered in the sim-
ulation and at which components and nodes it is present.

• lambda : set default wavelength/frequency
usage : lambda wavelength

wavelength = new reference wavelength in meters
With this command you set a new reference wavelength, overwriting that set in the
kat.ini file (typically 1064nm).

• noplot : suppress the plot of an output
usage : noplot output

output = previously defined output (detector, function, etc.)
Since func and lock create new outputs, the resulting plots might become very clut-
tered. Therefore the command noplot output has been introduced. It suppresses
the plotting of the given output (photodetector, function, lock, ...). The data is
stored in the *.out file as before, only the plot command in the respective the *.gnu
batch file is changed.
Please note that noplot cannot be used to suppress all plotting. One output must
remain to be plotted. If you want to suppress all graphical output please use
gnuterm no.

• deriv h : overwrites the value for deriv h given in ‘kat.ini’
usage : deriv_h value

value = step size for numerical differentiation

220

G.4 Commands

This command can be used to overwrite the pre-defined vale for deriv h. This
can be useful especially when you want to differentiate alignment signals in which
numerical values of 10−9 are often required.

• conf : Sets configuration options for various optical components
usage : conf component option value

component = mirror or beamsplitter name
option = name of option to set
value = input for option

This command is used to fine tune and alter the computational routines for a
given optical component. It does not represent anything physical about the optic.
Currently it is used to alter the behaviour of the coupling coefficient computation
for both mirrors and beamsplitters, it is not used for any other components at the
moment.

– integration_method (1 or 2 or 3) sets the numerical integration method. Cuba
refers to a self-adapting routine which is faster but less robust: 1 - Riemann
Sum, 2 - Cubature - Serial, 3 - Cubature - Parallel (default)

– interpolation_method (1 or 2 or 3) set the interpolation method for the nu-
merical integration of surface maps, the (use NN for maps with sharp edges):
1 - Nearest Neighbour (default), 2 - Linear, 3 - Spline.

– interpolation_size integer (odd integer > 0) sets the size of the interpolation
kernel, must be odd and > 0

– knm_flags (integer > 0) Sets the knm computation flags which define if coeffs
are calculated numerically or analytically if possible.

– show_knm_neval (0/1) Shows the number of integrand evaluations used for the
map integration.

– save_knm_matrices (0/1) If true the knm matrices are saved to .mat files for
distortion, merged map and the final result

– save_knm_binary (0/1) If true the knm and merged map data is stored in a
binary format rather than ascii. See -convert option for kat in -h for converting
between the 2 formats

– save_interp_file (0/1) If 1 then for each knm calculated a file is written
to outputting each interpolated point. The output file will have 4 columns:
x,y,A,phi. So for each integrand evaluation the interpolated point is plotted

– save_integration_points (0/1) If 1 then the points used for integration are
saved to files. Only use this with Riemann integrator, Cuba can use millions
of points and is slow

– knm_order (12 or 21) changes order in which the coupling coefficient matrices
are computed. 1 = Map, 2 = Bayer-Helms

– knm_change_q (1 or 2) Decides the value of the expansion beam parameter q L.
If 1 then q L = q’ 1 and if 2 then q L = q 2.

221

Appendix G Syntax reference

G.5 Auxiliary plot commands

• gnuterm : Gnuplot terminal (optional)
usage : gnuterm terminal [filename]

terminal = one terminal name specified in ‘kat.ini’, default is ‘x11’ or
‘windows’ respectively

filename = name for Gnuplot output file
maximum number : 20

If you do not want a Gnuplot batch file to be written use : ‘gnuterm no’.

• pause : pauses after plotting
usage : pause

maximum number : 1

Adds a command ‘pause -1’ to the Gnuplot batch file after each plot into a screen
terminal.

• multi : switches from a single surface to multiple surfaces in 3D plots
usage : multi

maximum number : 1

By default in a 3D plot only the first output is plotted even if multiple outputs are
present. If ‘multi’ is set, Gnuplot plots multiple surfaces into the same graph.
Please note that even without setting ‘multi’ the data of all outputs is present in
the output data file.

• GNUPLOT ... END : extra Gnuplot commands
usage (for example):
GNUPLOT

set view 70, 220, ,

set contour

END

All the Gnuplot commands specified between GNUPLOT and END will be written
to the Gnuplot batch file. This is especially useful for 3D plots (see 3D.kat for an
example).

222

Acknowledgements

Gerhard Heinzel has been the major force behind the creation of Finesse. He had
the idea of using the LISO routines on interferometer problems and he let me copy his
code for that purpose. Furthermore he has been very busy as my most faithful beta
tester and has helped me getting the right ideas in many discussions. I have gotten
many helpful bug reports from Guido Müller early on and always enjoyed discussing
interferometer configurations with him. The latter is also true for Roland Schilling: For
hours he would listen to me on the phone while I was trying to understand my program -
or interferometers and optics. Ken Strain has been a constant source of help and support
during the several years of development. During my time at Virgo Gabriele Vajente
and Maddalena Mantovani have acted as faithful test pilots for the extension with the
lock command. Alexander Bunkowski has initiated and helped debugging the grating
implementation. Jerome Degallaix has often helped with suggestions, examples and test
results based on his code OSCAR to further develop and test Finesse.

Paul Cochrane has made a big difference with his help on transforming the source code
from its messy original form into a more professional package, including a testsuite, an
API documentation and above all a readable source code.

More recently (2011 to 2013) several current and former members from my research group
in Birmingham have put significant effort into the further development, testing and use
of Finesse. Daniel Brown became lead programmer and provided a large number of bug
fixes and new features navigating the tricky grounds of optics with high-order modes.
Due to his work, Finesse has reached version 1.0 and is now available as open source.
Charlotte Bond is a specialist in using Finesse, in particular with mirror surface maps or
strange beam shapes; she has become the main contributor of our Simtools package and
her help with Finesse has been invaluable for getting the physics of higher-order modes
right. Further, Keiko Kokeyama, Paul Fulda and Ludovico Carbone have worked very
hard to help making Finesse do useful things for the Advanced LIGO commissioning
team.

In the last year Daniel Brown has implemented the long requested feature of radiation
pressure effects in addition to a full quantum noise treatment in the two-photon formalism.
Daniel was supported in this activity by other members of my group, especially Mengyao
Wang and Rebecca Palmer; and we once again could rely on crucial assistance from Jan
Harms.

Many people in the gravitational wave community have helped me with feedback, bug
reports and encouragement. Some of them are Seiji Kawamura, Simon Chelkowski, Keita
Kawabe, Osamu Miyakawa, Rainer Künnemeyer, Uta Weiland, Michaela Malec, Oliver
Jennrich, James Mason, Julien Marque, Mirko Prijatelj, Jan Harms, Oliver Bock, Kentaro
Somiya, Antonio Chiummo, Holger Wittel, Hartmut Grote, Bryan Barr, Sabina Huttner,
Haixing Miao, Benjamin Jacobs, Stefan Ballmer, Nicolas Smith-Lefebvre, Daniel Shad-
dock and probably many more that I have not mentioned here.

Last but not least I would like to thank the GEO 600 group, especially Karsten Danzmann

223

and Benno Willke, for the possibility to work on Finesse in parallel to my experimental
work on the GEO site. Finesse would not exist without their positive and open attitude
towards the young members of the group.

224

Bibliography

[Abramowitz] Abramowitz M and Stegun I. A ‘Handbook of mathematical functions with
formulas, graphs, and mathematical tables’, Dover Books, New York, 1965. 104

[Ballmer] S. Ballmer, J. Degallaix, A. Freise and P. Fulda: ‘Comparing Finesse simula-
tions, analytical solutions and OSCAR simulations of Fabry-Perot alignment signals’,
LIGO note T1300345, https://dcc.ligo.org/LIGO-T1300345, (2013). 185

[Bayer-Helms] F. Bayer-Helms: ‘Coupling coefficients of an incident wave and the modes
of a spherical optical resonator in the case of mismatching’ (and references within),
Appl. Opt. 23 (1984) 1369–1380. 82, 83, 106, 210

[Bond13] C. Bond, D. Brown and A. Freise: ‘Interferometer responses to gravita-
tional waves: Comparing Finesse simulations and analytical solutions’, LIGO note
T1300190, https://dcc.ligo.org/LIGO-T1300190, and arXiv.1306.6752, http:

//arxiv.org/abs/1306.6752, (2013). 185

[Bond13b] C. Bond, P. Fulda, D. Brown and A. Freise: ‘Comparing Simulations of the
Advanced LIGO Dual-Recycled Michelson’, LIGO note T1400270, https://dcc.

ligo.org/LIGO-T1400270, (2013). 185

[Bond13c] C. Bond, P. Fulda, D. Brown and A. Freise: ‘Investigation of beam clipping in
the Power Recycling Cavity of Advanced LIGO using Finesse’, LIGO note T1300954,
https://dcc.ligo.org/LIGO-T1300954, (2013). 185

[Bond14] C. Bond, P. Fulda, A. Freise and D. Brown: ‘Simulations of effects of LLO
mode-mismatches on PRFPMI error signals’, LIGO note T1400182, https://dcc.
ligo.org/LIGO-T1400182, (2014). 185

[Brown] D. Brown et al., paper in preparation. 122, 131

[Bunkowski01] A. Bunkowski, O. Burmeister, K. Danzmann and R. Schnabel: ‘Input-
output relations for a three-port grating coupled Fabry-Perot cavity’, Opt. Lett. 30
(2005) 1183–1185. 46, 49

[Caves] C. M. Caves and B. L. Schumaker: ‘New formalism for two-photon quantum
optics. I - Quadrature phases and squeezed states. II - Mathematical foundation and
compact notation’. Physical Review A, 31, 3068-3111 (1985). 131

[Clarke] J. Clarke, H. Wang, D. Brown and A. Freise: ‘Revisiting Sidebands of Sidebands
in Finesse’, LIGO note T1300986, https://dcc.ligo.org/LIGO-T1300986, (2013).
185

225

https://dcc.ligo.org/LIGO-T1300345
https://dcc.ligo.org/LIGO-T1300190
http://arxiv.org/abs/1306.6752
http://arxiv.org/abs/1306.6752
https://dcc.ligo.org/LIGO-T1400270
https://dcc.ligo.org/LIGO-T1400270
https://dcc.ligo.org/LIGO-T1300954
https://dcc.ligo.org/LIGO-T1400182
https://dcc.ligo.org/LIGO-T1400182
https://dcc.ligo.org/LIGO-T1300986

Bibliography

[DCUHRE] J. Berntsen, T. O. Espelid and A. Genz: ‘Algorithm 698; DCUHRE: an adap-
tive multidemensional integration routine for a vector of integrals’, ACM Transac-
tions on Mathematical Software (TOMS), 17, 4 (1991) 452–456. 212

[Dooley] K. Dooley et. al., ‘Report from the Commissioning Workshop at LLO (Jan.
2013), LIGO note T1300497, https://dcc.ligo.org/LIGO-T1300497, (2013). 185

[Evans] M. Evans, L. Barsotti and P. Fritschel: ‘A general approach to optomechanical
parametric instabilities’, Physics Letters A , 2010, 374, 665 - 671. 127, 128, 129

[Finesse] A. Freise: ‘Finesse, Frequency domain interferometer simulation software
(1999-2013), http://www.gwoptics.org/finesse/.

[Freise] A. Freise: ‘The Next Generation of Interferometry: Multi-Frequency Optical
Modelling, Control Concepts and Implementation’, Ph.D. Thesis, University of
Hannover (2003), http://www.amps.uni-hannover.de/dissertationen/freise_

diss.pdf. 3

[Freise03] A. Freise, G, Heinzel, H. Lück, R. Schilling, B. Willke and K. Danzmann:
‘Frequency-domain interferometer simulation with higher-order spatial modes’,
Class. Quantum Grav. 21 1067–1074 (2003). 3

[Freise10] A. Freise and K. Strain: ‘Interferometer Techniques for Gravitational-Wave
Detection’, Living Reviews in Relativity, 2010, 13, 1-+, available at http://

relativity.livingreviews.org/Articles/lrr-010-1/2. 5

[GEO] K. Danzmann et al.: in First Edoardo Amaldi Conference on Gravitational Wave
Experiments, Frascati (1994), (World Scientific, Singapore, 1995) 100–111. 3

[Gnuplot] T. Williams, C. Kelley et.al.: Gnuplot (1999), http://www.gnuplot.info. 2,
4

[Grote] H. Grote, A. Freise, M. Malec, G. Heinzel, B. Willke, H. Lück, K. A. Strain,
J. Hough and K. Danzmann: ‘Dual recycling for GEO 600’, Class. Quantum Grav. 21
473–480 (2003). 3

[GWIC] Numerical modelling tools for gravitational wave detectors, hosted by the Grav-
itational Wave International Committee (GWIC),
https://gwic.ligo.org/simulations. 3

[gwoptics/impact] History and impact of the Finesse simulation tool
http://www.gwoptics.org/finesse/impact.php. 3

[H1kat] C. Bond, P. Fulda, A. Freise, L. Carbone, K. Kokeyama and D. Brown: ‘Finesse
input files for the H1 interferometer’, LIGO note T1300904, https://dcc.ligo.

org/LIGO-T1300904, (2013). 185

[Harms] J. Harms, P. Cochrane and A. reise: ‘Quantum-noise power spectrum of fields
with discrete classical components’, Phys. Rev. A, 76, 023803-+ (2007), also available
at http://arxiv.org/abs/quant-ph/0703119. 134, 170

226

https://dcc.ligo.org/LIGO-T1300497
http://www.gwoptics.org/finesse/
http://www.amps.uni-hannover.de/dissertationen/freise_diss.pdf
http://www.amps.uni-hannover.de/dissertationen/freise_diss.pdf
http://relativity.livingreviews.org/Articles/lrr-010-1/2
http://relativity.livingreviews.org/Articles/lrr-010-1/2
http://www.gnuplot.info
https://gwic.ligo.org/simulations
http://www.gwoptics.org/finesse/impact.php
https://dcc.ligo.org/LIGO-T1300904
https://dcc.ligo.org/LIGO-T1300904
http://arxiv.org/abs/quant-ph/0703119

Bibliography

[Heinzel] G. Heinzel: ‘Advanced optical techniques for laser-interferometric gravitational-
wave detectors’,Ph.D. Thesis, University of Hannover (1999). 32, 33, 37

[Hewitson04] K. Hewitson: ‘On aspects of characterising and calibrating the interfero-
metric gravitational wave detector, GEO 600’, PhD Thesis, University of Glasgow
(2004), available at www.astro.gla.ac.uk/users/hewitson/MRHthesis.pdf. 171

[Hello-Vinet] P. Hello and J. Y. Vinet: ‘Ënalytical models of thermal aberrations in mas-
sive mirrors heated by high power laser beams’ J. Phys. France 51 1267 (1990).
178

[Kawabe] K. Kawabe: ‘An informal note on Finesse: “Sidebands of Sidebands”’, internal
note, available on the Finesse webpage (2002).

[KLU] Davis T. A: ‘CSparse, CXSparse, KLU, and BTF: Direct Methods for Sparse
Linear Systems’, SIAM, Philadelphia (2006).

[Kokeyama] K. Kokeyama, K. Arai, P. Fulda, S. Doravari, L. Carbone, D. Brown, C. Bond
and A. Freise, ‘Finesse simulation for the alignment control signal of the aLIGO in-
put mode cleaner’, LIGO note T1300074, https://dcc.ligo.org/LIGO-T1300074,
(2013). 185

[Kimble] H. Kimble, Y. Levin, A. Matsko, K. Thorne and S. Vyatchanin, Conversion of
conventional gravitational-wave interferometers into quantum nondemolition inter-
ferometers by modifying their input and/or output optics, Physical Review D, 2002
142

[L1kat] C. Bond, P. Fulda, A. Freise, L. Carbone, K. Kokeyama and D. Brown: ‘Finesse
input files for the L1 interferometer’, LIGO note T1300901, https://dcc.ligo.org/
LIGO-T1300901, (2013). 185

[Liso] G. Heinzel : ‘LISO, Program for Linear Simulation and Optimization of analog
electronic circuits’, MPQ Garching (1998). 3

[Luxor] J. Harms : ‘Luxor, graphical user interface for Finesse’,
http://www.gwoptics.org/finesse/luxor.php 4, 5

[Lück] H. Lück, A. Freise, S. Goßler, S. Hild, K. Kawabe and K. Danzmann : ‘Thermal
correction of the radii of curvature of mirrors for GEO 600’, Class. Quantum Grav. 21
985–989 (2003). 3

[Malec] M. Malec, H. Grote, A. Freise, G. Heinzel, K. A. Strain, J. Hough and K. Danz-
mann : ‘Towards dual recycling with the aid of time and frequency simulations’,
Class. Quantum Grav. 21 991–998 (2003). 3

[Meers] Meers, B. J. and Strain, K. A.: ‘Modulation, signal, and quantum noise in inter-
ferometers’, Phys. Rev. A 44 4693–4703 (1991). 147, 169

[Mizuno] J. Mizuno: ‘Comparison of optical configurations for laser-interferometric
gravitational-wave-detectors’, Ph.D. Thesis, University of Hannover (1995). 56

227

www.astro.gla.ac.uk/users/hewitson/MRHthesis.pdf
https://dcc.ligo.org/LIGO-T1300074
https://dcc.ligo.org/LIGO-T1300901
https://dcc.ligo.org/LIGO-T1300901
http://www.gwoptics.org/finesse/luxor.php

Bibliography

[Niebauer] Niebauer, T. M., Schilling, R., Danzmann, K., Rüdiger, A. and Winkler, W.:
‘Nonstationary shot noise and its effect on the sensitivity of interferometers’, Phys.
Rev. A 43 5022–5029 (1991). 147, 169

[OSCAR] J. Degallaix: ‘OSCAR: a Matlab based FFT code’ (2008), available at http:

//www.mathworks.com/matlabcentral/fileexchange/20607-oscar 182, 185

[PyKat] D. Brown: ‘PyKat Python interface and tools for FINESSE’, http://www.

gwoptics.org/pykat/. 151

[Rüdiger] A. Rüdiger: ‘Phasenbeziehungen an einem symmetrischen Strahlteiler’, internal
note (1978). 32

[Siegman] A.E. Siegman: ‘Lasers’, University Science Books, Mill Valley (1986), see also
the Errata at http://www-ee.stanford.edu/~siegman/lasers_book_errata.pdf
73, 75, 106, 193

[SimTools] Simtools, a collection of Matlab tools for optical simulations, available at
http://www.gwoptics.org/simtools/ 94, 152

[Sparse] K.S. Kundert, A. Sangiovanni-Vincentelli: ‘Sparse, A Sparse Linear Equation
Solver’, University of California, Berkeley (1988). 4

[VPB] J. Y. Vinet: ‘The VIRGO physics book’, this book is currently a very good optics
textbook, available online at:
http://wwwcascina.virgo.infn.it/vpb 82, 179

[Willke01] B. Willke et al.: ‘The GEO 600 gravitational wave detector’, Class. Quantum
Grav. 19 1377–1387 (2002). 3

[Yamamoto] H. Yamamoto: ‘Mode matching and diffraction loss of FP cavity with ther-
mal deformations’, LIGO internal note, T0900306 (2010), https://dcc.ligo.org/
LIGO-T0900306-v6 177

228

http://www.mathworks.com/matlabcentral/fileexchange/20607-oscar
http://www.mathworks.com/matlabcentral/fileexchange/20607-oscar
http://www.gwoptics.org/pykat/
http://www.gwoptics.org/pykat/
http://www-ee.stanford.edu/~siegman/lasers_book_errata.pdf
http://www.gwoptics.org/simtools/
http://wwwcascina.virgo.infn.it/vpb
https://dcc.ligo.org/LIGO-T0900306-v6
https://dcc.ligo.org/LIGO-T0900306-v6

	Title
	Short Syntax Reference
	1 Introduction
	1.1 Motivation
	1.2 How does it work?
	1.3 Quick start
	1.3.1 Installation
	1.3.2 How to perform a simulation

	2 The program files
	2.1 kat—the main program
	2.2 kat.ini—the init file for kat
	2.3 *.kat—the input files (how to do a calculation)
	2.4 *.out—the output files
	2.5 *.gnu—the Gnuplot batch files
	2.6 *.m—the Matlab script files
	2.7 *.py—the Python script files

	3 Mathematical description of light beams and optical components
	3.1 Introduction
	3.1.1 Static response and frequency response
	3.1.2 Transfer functions and error signals
	3.1.3 The interferometer matrix

	3.2 Conventions and concepts
	3.2.1 Nodes and components
	3.2.2 Mirrors and beam splitters

	3.3 Frequencies and wavelengths
	3.3.1 Phase change on reflection and transmission
	3.3.2 Lengths and tunings

	3.4 The plane-wave approximation
	3.4.1 Description of light fields
	3.4.2 Photodetectors and mixers
	3.4.3 Modulation of light fields
	3.4.4 Coupling of light field amplitudes
	3.4.5 Input fields or the `right hand side' vector
	3.4.6 Photodetectors and demodulation

	3.5 The lock command
	3.5.1 Using a real error signal for a lock
	3.5.2 Setting the lock gain
	3.5.3 Tuning the lock
	3.5.4 A pseudo-lock

	4 Higher-order spatial modes, the paraxial approximation
	4.1 Finesse with Hermite-Gaussian beams
	4.2 Gaussian beams
	4.3 Higher order Hermite-Gauss modes
	4.3.1 Gaussian beam parameter
	4.3.2 Tangential and sagittal plane
	4.3.3 Gouy phase shift
	4.3.4 ABCD matrices

	4.4 Tracing the beam
	4.5 Interferometer matrix with Hermite-Gauss modes
	4.6 Coupling of Hermite-Gauss modes
	4.6.1 Coupling coefficients for TEM modes
	4.6.2 Alignment transfer function

	4.7 Mirror surface maps
	4.7.1 Phase maps
	4.7.2 Absorption maps
	4.7.3 Reflectivity maps
	4.7.4 Coupling coefficients from mirror maps
	4.7.5 The map file format
	4.7.6 How to apply a map to a component
	4.7.7 Accelerating calculations by saving coupling coefficients
	4.7.8 Coupling cofficient data files - ASCII vs binary formats
	4.7.9 Integration and interpolation methods
	4.7.10 Map example: a focusing surface in transmission
	4.7.11 Surface map example: a tilted mirror in reflection
	4.7.12 Realistic map example: thermal distortions
	4.7.13 Couling coefficients for multiple effects

	4.8 Detection of Hermite-Gauss modes
	4.8.1 Amplitude detectors
	4.8.2 Photodetectors
	4.8.3 Split photodetector
	4.8.4 Beam detectors

	4.9 Limits to the paraxial approximation
	4.10 Mode mismatch in practice when using Finesse
	4.10.1 Phases and operating points
	4.10.2 The phase command and its effects
	4.10.3 Mode mismatch effects on the cavity phase

	4.11 Misalignment angles at a beam splitter
	4.12 Aperture effects and diffraction losses

	5 Radiation pressure
	5.0.1 Radiation pressure calculation approximations
	5.1 Radiation pressure force to a mirror motion
	5.2 Mirror motion to optical phase change
	5.3 Example: optical spring
	5.4 Rotational mirror motion
	5.5 Example: torsional optical spring
	5.6 General of surface motions
	5.6.1 Parametric gain detector

	5.7 Example: parametric instabilities

	6 Quantum noise
	6.1 New quantum noise modelling
	6.1.1 Sources of quantum noise
	6.1.2 Quantum detectors
	6.1.3 Example: unbalanced quantum noise homodyne detection
	6.1.4 Example: dual-recycled, quantum-noise limited sensitivity
	6.1.5 Example: a filter cavity, or how to rotate a squeezed state

	6.2 Shot-noise-limited sensitivity (before version 2.0)
	6.2.1 Simple Michelson interferometer on a half fringe
	6.2.2 Simple Michelson interferometer on a dark fringe

	7 Advanced Usage
	7.1 PyKat: Finesse and Python
	7.2 Finesse and Octave/Matlab
	7.2.1 SimTools
	7.2.2 Client-Server mode of FINESSE

	A Tutorial for setting up and locking a cavity
	A.1 The Basics
	A.2 Creating the error signal
	A.3 Forming the locking loop

	B Shot-noise limited sensitivity of GEO600
	B.1 The qshot command (before Finesse 2.0)
	B.2 Comparing the different methods
	B.3 Computing the shot-noise-limited sensitivity of GEO

	C Realistic thermal distortions in Advanced LIGO arm cavities
	C.1 Preparing mirror maps
	C.2 Simulation setup
	C.3 Results

	D Further reading: Finesse in practice
	E Maps and Coupling Coefficients
	E.1 Correct implementation
	E.2 Separating more distortions
	E.3 Coupling coefficient integration performance improvements

	F Some mathematics
	F.1 Hermite polynomials
	F.2 The paraxial wave equation

	G Syntax reference
	G.1 Comments
	G.2 Components
	G.3 Hermite-Gauss extension
	G.4 Commands
	G.5 Auxiliary plot commands

	Acknowledgements
	Bibliography

